Instalar ambiente de Desarrollo Python Anaconda para Aprendizaje Automático

Para programar tu propia Máquina de Inteligencia Artificial necesitarás tener listo tu ambiente de desarrollo local, en tu computadora de escritorio o portátil. En este tutorial explicaremos una manera sencilla de configurar Python y las librerías necesarias para programar como un Científico de Datos y utilizar los algoritmos más conocidos de Machine Learning.

¿Por qué instalar Python y Anaconda en mi ordenador?

Python es un lenguaje sencillo, rápido y liviano y es ideal para aprender, experimentar, practicar y trabajar con machine learning, redes neuronales y aprendizaje profundoentre otros-.

Utilizaremos la Suite de Anaconda que nos facilitará la tarea de instalar el ambiente e incluirá las Jupyter Notebooks, que es una aplicación que nos ayudará a hacer ejercicios paso a paso en Machine Learning, crear visualizaciones de datos y escribir comentarios tal como si se tratase de un cuaderno de notas del colegio o la universidad.

Esta Suite es multiplataforma y se puede utilizar para Windows, Linux y Macintosh. En mi caso descargaré la versión para mi Macbook Pro, pero para otro sistema operativo será similar.

Agenda del futuro Científico de Datos

Nuestra agenda de hoy incluye:

  • Descargar Anaconda
  • Instalar Anaconda
  • Iniciar y Actualizar Anaconda
  • Actualizar paquete scikit-learn
  • Instalar Librerías para Deep Learning

Comencemos!

Continue reading “Instalar ambiente de Desarrollo Python Anaconda para Aprendizaje Automático”

K-Means en Python paso a paso

K-Means es un algoritmo no supervisado de Clustering. Se utiliza cuando tenemos un montón de datos sin etiquetar. El objetivo de este algoritmo es el de encontrar “K” grupos (clusters) entre los datos crudos. En este artículo repasaremos sus conceptos básicos y veremos un ejemplo paso a paso en python que podemos descargar.

Cómo funciona K-Means

El algoritmo trabaja iterativamente para asignar a cada “punto” (las filas de nuestro conjunto de entrada forman una coordenada) uno de los “K” grupos basado en sus características. Son agrupados en base a la similitud de sus features (las columnas). Como resultado de ejecutar el algoritmo tendremos:

Continue reading “K-Means en Python paso a paso”