¿Machine Learning en la Nube? Google Colaboratory con GPU!

Por increíble que parezca, ahora mismo tenemos disponible una cuenta gratuita para programar nuestros modelos de Machine Learning en la nube, con Python, Jupyter Notebooks de manera remota y hasta con GPU para poder aumentar nuestro poder de procesamiento…. gratis! sí sí… esto no es un “cuento del tío” ni tiene ninguna trampa!… Descubre cómo aprovecharlo en este artículo!

Machine Learning desde el Navegador

Primero lo primero. ¿Porqué voy a querer tener mi código en la nube? Pues bien, lo normal (¿ideal?) es que tengamos un entorno de desarrollo local en nuestro propio ordenador, un entorno de pruebas en algún servidor, staging y producción. Pero… ¿qué pasa si aún no tenemos instalado el ambiente?, o tenemos conflictos con algún archivo/librería, versión de Python… ó por lo que sea no tenemos espacio en disco… ó hasta si nos va muy lento y no disponemos en -el corto plazo- de mayor procesador/ram? O hasta por simple comodidad, está siempre bien tener a mano una web online, “siempre lista” en donde ya esté prácticamente todo el software que necesitamos instalado. Y ese servicio lo da Google, entre otras opciones. Lo interesante es que Google Colab ofrece varias ventajas frente a sus competidores.

La GPU…. ¿en casa o en la nube?

¿Una GPU? ¿para que quiero eso si ya tengo como 8 núcleos? La realidad es que para el procesamiento de algoritmos de Aprendizaje Automático (y para videojuegos, ejem!) la GPU resulta mucho más potente en realizar cálculos (también en paralelo) por ejemplo las multiplicaciones matriciales… esas que HACEMOS TOooooDO el tiempo al ENTRENAR nuestros modelos!!! para hacer el descenso por gradiente ó Toooodo el rato con el Backpropagation de nuestras redes neuronales… Esto supone una mejora de hasta 10x en velocidad de procesado… Algoritmos que antes tomaban días y ahora se resuelven en horas. Un avance enorme.

Si tienes una tarjeta Nvidia con GPU ya instalada, felicidades ya tienes el poder! Si no la tienes y no vas a invertir unos cuántos dólares en comprarla, puedes tener toda(*) su potencia desde la nube!

(*)NOTA: Google se reserva el poder limitar el uso de GPU si considera que estás abusando ó utilizando en demasía ese recurso ó para fines indebidos (por ej. minería de bitcoins)

Bienvenidos a Google Colaboratory

¿Qué es Google Colab?

Continuar leyendo “¿Machine Learning en la Nube? Google Colaboratory con GPU!”

Ejemplo Web Scraping en Python: IBEX35® la Bolsa de Madrid

En este artículo aprenderemos a utilizar la librería BeatifulSoap de Python para obtener contenidos de páginas webs de manera automática.

En internet encontramos de todo: artículos, noticias, estadísticas e información útil (¿e inútil?), pero ¿cómo la extraemos? No siempre se encuentra en forma de descarga ó puede haber información repartida en multiples dominios, ó puede que necesitemos información histórica, de webs que cambian con el tiempo.

Para poder generar nuestros propios archivos con los datos que nos interesan y de manera automática es que utilizaremos la técnica de WebScraping.

Contenidos:

  • Requerimientos para WebScraping
  • Lo básico de HTML y CSS que debes saber
  • Inspeccionar manualmente una página web
  • Al código! Obtener el valor actual del IBEX35® de la Bolsa de Madrid
  • Exportar a archivo csv (y poder abrir en Excel)
  • Otros casos frecuentes de “rascar la web”

Puedes ver y descargar el código python completo de este artículo desde GitHub haciendo click aquí

Continuar leyendo “Ejemplo Web Scraping en Python: IBEX35® la Bolsa de Madrid”

Procesamiento del Lenguaje Natural (NLP)

¿Qué es Natural Language Processing?

El Procesamiento del Lenguaje Natural (NLP por sus siglas en inglés) es el campo de estudio que se enfoca en la comprensión mediante ordenador del lenguaje humano. Abarca parte de la Ciencia de Datos, Inteligencia Artificial (Aprendizaje Automático) y la lingüística.

En NLP las computadoras analizan el leguaje humano, lo interpretan y dan significado para que pueda ser utilizado de manera práctica. Usando NLP podemos hacer tareas como resumen automático de textos, traducción de idiomas, extracción de relaciones, Análisis de sentimiento, reconocimiento del habla y clasificación de artículos por temáticas.

El gran desafío

Continuar leyendo “Procesamiento del Lenguaje Natural (NLP)”

¿Cómo funcionan las Convolutional Neural Networks? Visión por Ordenador

En este artículo intentaré explicar la teoría relativa a las Redes Neuronales Convolucionales (en inglés CNN) que son el algoritmo utilizado en Aprendizaje Automático para dar la capacidad de “ver” al ordenador. Gracias a esto, desde apenas 1998, podemos clasificar imágenes, detectar diversos tipos de tumores automáticamente, enseñar a conducir a los coches autónomos y un sinfín de otras aplicaciones.

El tema es bastante complejo/complicado e intentaré explicarlo lo más claro posible. En este artículo doy por sentado que tienes conocimientos básicos de cómo funciona una red neuronal artificial multicapa feedforward (fully connected). Si no es así te recomiendo que antes leas sobre ello:

¿Qúe es una CNN? ¿Cómo puede ver una red neuronal? ¿Cómo clasifica imagenes y distingue un perro de un gato?

La CNN es un tipo de Red Neuronal Artificial con aprendizaje supervisado que procesa sus capas imitando al cortex visual del ojo humano para identificar distintas características en las entradas que en definitiva hacen que pueda identificar objetos y “ver”. Para ello, la CNN contiene varias capas ocultas especializadas y con una jerarquía: esto quiere decir que las primeras capas pueden detectar lineas, curvas y se van especializando hasta llegar a capas más profundas que reconocen formas complejas como un rostro o la silueta de un animal.

Necesitaremos…

Recodemos que la red neuronal deberá aprender por sí sola a reconocer una diversidad de objetos dentro de imágenes y para ello necesitaremos una gran cantidad de imágenes -lease más de 10.000 imágenes de gatos, otras 10.000 de perros,…- para que la red pueda captar sus características únicas -de cada objeto- y a su vez, poder generalizarlo -esto es que pueda reconocer como gato tanto a un felino negro, uno blanco, un gato de frente, un gato de perfil, gato saltando, etc.-

Pixeles y neuronas

Continuar leyendo “¿Cómo funcionan las Convolutional Neural Networks? Visión por Ordenador”

Comprende Principal Component Analysis

En este artículo veremos una herramienta muy importante para nuestro kit de Machine Learning y Data Science: PCA para Reducción de dimensiones. Como bonus-track veremos un ejemplo rápido-sencillo en Python usando Scikit-learn.

Introducción a PCA

Imaginemos que queremos predecir los precios de alquiler de vivienda del mercado. Al recopilar información de diversas fuentes tendremos en cuenta variables como tipo de vivienda, tamaño de vivienda, antigüedad, servicios, habitaciones, con/sin jardín, con/sin piscina, con/sin muebles  pero también podemos tener en cuenta la distancia al centro, si hay colegio en las cercanías, o supermercados, si es un entorno ruidoso, si tiene autopistas en las cercanías, la “seguridad del barrio”, si se aceptan mascotas, tiene wifi, tiene garaje, trastero… y seguir y seguir sumando variables.

Es posible que cuanta más (y mejor) información, obtengamos una predicción más acertada. Pero también empezaremos a notar que la ejecución de nuestro algoritmo seleccionado (regresión lineal, redes neuronales, etc.) empezará a tomar más y más tiempo y recursos. Es posible que algunas de las variables sean menos importantes y no aporten demasiado valor a la predicción. También podríamos acercarnos peligrosamente a causar overfitting al modelo.

¿No sería mejor tomar menos variables, pero más valiosas?

Continuar leyendo “Comprende Principal Component Analysis”

Breve Historia de las Redes Neuronales Artificiales

Arquitecturas y Aplicaciones de las Redes Neuronales más usadas.

Vamos a hacer un repaso por las diversas estructuras inventadas, mejoradas y utilizadas a lo largo de la historia para crear redes neuronales y sacar el mayor potencial al Deep Learning para resolver toda clase de problemas de regresión y clasificación.

Evolución de las Redes Neuronales en Ciencias de la Computación

Vamos a revisar las siguientes redes/arquitecturas:

  • 1958 – Perceptron
  • 1965 – Multilayer Perceptron
  • 1980’s
    • Neuronas Sigmoidales
    • Redes Feedforward
    • Backpropagation
  • 1989 – Convolutional neural networks (CNN) / Recurent neural networks (RNN)
  • 1997 – Long short term memory (LSTM)
  • 2006 – Deep Belief Networks (DBN): Nace deep learning
    • Restricted Boltzmann Machine
    • Encoder / Decoder = Auto-encoder
  • 2014 – Generative Adversarial Networks (GAN)

Si bien esta lista no es exhaustiva y no se abarcan todos los modelos creados desde los años 50, he recopilado las que fueron -a mi parecer- las redes y tecnologías más importantes desarrolladas para llegar al punto en que estamos hoy: el Aprendizaje Profundo.

El inicio de todo: la neurona artificial

Continuar leyendo “Breve Historia de las Redes Neuronales Artificiales”