¿Comprar casa o Alquilar? Naive Bayes usando Python

Hoy veremos un nuevo ejercicio práctico, intentando llevar los algoritmos de Machine Learning a ejemplos claros y de la vida real, repasaremos la teoría del Teorema de Bayes (video) de estadística para poder tomar una decisión muy importante: ¿me conviene comprar casa ó alquilar?

Veamos si la Ciencia de Datos nos puede ayudar a resolver el misterio… ¿Si alquilo estoy tirando el dinero a la basura? ó ¿Es realmente conveniente pagar una hipoteca durante el <<resto de mi vida>>?

Si bien tocaremos el tema livianamente -sin meternos en detalles como intereses de hipotecas variable/fija, porcentajes, comisiones de bancos,etc- haremos un planteo genérico para obtener resultados y tomar la mejor decisión dada nuestra condición actual.

En artículos pasados vimos diversos algoritmos Supervisados del Aprendizaje Automático que nos dejan clasificar datos y/o obtener predicciones o asistencia a la toma de decisiones (árbol de decisión, regresión logística y lineal, red neuronal). Por lo general esos algoritmos intentan minimizar algún tipo de coste iterando las entradas y las salidas y ajustando internamente las «pendientes» ó «pesos» para hallar una salida. Esta vez, el algoritmo que usaremos se basa completamente en teoría de probabilidades  y obteniendo resultados estadísticos. ¿Será suficiente el Teorema de Bayes para obtener buenas decisiones? Veamos!

Continuar leyendo «¿Comprar casa o Alquilar? Naive Bayes usando Python»

Programa un coche Arduino con Inteligencia Artificial

El Machine Learning nos permitirá utilizar Redes Neuronales para que un coche Arduino conduzca sólo evitando obstáculos.

En el artículo anterior, creamos una red neuronal desde cero en Python. En este artículo mejoraremos esa red y copiaremos sus pesos a una red con propagación hacia adelante en Arduino que permitirá que el coche robot conduzca sólo sin chocar.

La Nueva Red Neuronal

Continuar leyendo «Programa un coche Arduino con Inteligencia Artificial»

Crear una Red Neuronal en Python desde cero

Programaremos una red neuronal artificial en Python, sin utilizar librerías de terceros. Entrenaremos el modelo y en pocas lineas el algoritmo podrá conducir por sí mismo un coche robot!.

Para ello, explicaremos brevemente la arquitectura de la red neuronal, explicaremos el concepto Forward Propagation y a continuación el de Backpropagation donde ocurre «la magia» y aprenden las neuronas.

Continuar leyendo «Crear una Red Neuronal en Python desde cero»

Clasificar con K-Nearest-Neighbor ejemplo en Python

K-Nearest-Neighbor es un algoritmo basado en instancia de tipo supervisado de Machine Learning. Puede usarse para clasificar nuevas muestras (valores discretos) o para predecir (regresión, valores continuos). Al ser un método sencillo, es ideal para introducirse en el mundo del  Aprendizaje Automático. Sirve esencialmente para clasificar valores buscando los puntos de datos «más similares» (por cercanía) aprendidos en la etapa de entrenamiento (ver 7 pasos para crear tu ML) y haciendo conjeturas de nuevos puntos basado en esa clasificación.

A diferencia de K-means, que es un algoritmo no supervisado y donde la «K» significa la cantidad de «grupos» (clusters) que deseamos clasificar, en K-Nearest Neighbor la «K» significa la cantidad de «puntos vecinos» que tenemos en cuenta en las cercanías para clasificar los «n» grupos -que ya se conocen de antemano, pues es un algoritmo supervisado-.

¿Qué es el algoritmo k-Nearest Neighbor ?

Continuar leyendo «Clasificar con K-Nearest-Neighbor ejemplo en Python»

Una sencilla Red Neuronal en Python con Keras y Tensorflow

historCrearemos una red neuronal artificial muy sencilla en Python con Keras y Tensorflow para comprender su uso. Implementaremos la compuerta XOR e intentaré comparar las ventajas del aprendizaje automático frente a la programación tradicional.

Requerimientos para el ejercicio

Puedes simplemente leer el código y comprenderlo o si quieres ejecutarlo deberás tener un ambiente de desarrollo Python como Anaconda para ejecutar el Jupyter Notebook (también funciona con python en línea de comandos). Sigue el tutorial para tener tu suite preparada e instalar Keras y Tensorflow. Al final del artículo podrás ver y descargar el código de GitHub.

Si aún no tienes muy claro qué son o cómo funcionan las Redes Neuronales, pues leer mi Guía Rápida sobre Deep Learning y luego volver aquí.

Las compuertas XOR

Para el ejemplo, utilizaremos las compuertas XOR. Si no las conoces o no las recuerdas, funcionan de la siguiente manera:

Tenemos dos entradas binarias (1 ó 0) y la salida será 1 sólo si una de las entradas es verdadera (1) y la otra falsa (0).

Es decir que de cuatro combinaciones posibles, sólo dos tienen salida 1 y las otras dos serán 0, como vemos aquí:

  • XOR(0,0) = 0
  • XOR(0,1) = 1
  • XOR(1,0) = 1
  • XOR(1,1) = 0

Una Red Neuronal Artificial sencilla con Python y Keras

Veamos el código completo en donde creamos una red neuronal con datos de entrada las 4 combinaciones de XOR y sus 4 salidas ordenadas. Luego analizamos el código linea a linea.

Continuar leyendo «Una sencilla Red Neuronal en Python con Keras y Tensorflow»

Regresión Lineal en español con Python

¿Qué es la regresión lineal?

La regresión lineal es un algoritmo de aprendizaje supervisado que se utiliza en Machine Learning y en estadística. En su versión más sencilla, lo que haremos es «dibujar una recta» que nos indicará la tendencia de un conjunto de datos continuos (si fueran discretos, utilizaríamos Regresión Logística).

En estadísticas, regresión lineal es una aproximación para modelar la relación entre una variable escalar dependiente «y» y una o mas variables explicativas nombradas con «X».

Recordemos rápidamente la fórmula de la recta:

Y = mX + b

Donde Y es el resultado, X es la variable, m la pendiente (o coeficiente) de la recta y b la constante o también conocida como el «punto de corte con el eje Y» en la gráfica (cuando X=0)

Aqui vemos un ejemplo donde vemos datos recabados sobre los precios de las pizzas en Dinamarca (los puntos en rojo) y la linea negra es la tendencia. Esa es la línea de regresión que buscamos que el algoritmo aprenda y calcule sólo.

¿Cómo funciona el algoritmo de regresión lineal en Machine Learning?

Continuar leyendo «Regresión Lineal en español con Python»