Arbol de Decisión en Python: Clasificación y predicción.

En este artículo describiremos rápidamente en qué consisten y cómo funcionan los árboles de decisión utilizados en Aprendizaje Automático y nos centraremos en un divertido ejemplo en Python en el que analizaremos a los cantantes y bandas que lograron un puesto número uno en las listas de Billboard Hot 100 e intentaremos predecir quién será el próximo Ed Sheeran a fuerza de Inteligencia Artificial. Realizaremos Gráficas que nos ayudarán a visualizar los datos de entrada y un grafo para interpretar el árbol que crearemos con el paquete Scikit-Learn. Comencemos!

¿Qué es un árbol de decisión?

Los arboles de decisión son representaciones gráficas de posibles soluciones a una decisión basadas en ciertas condiciones, es uno de los algoritmos de aprendizaje supervisado más utilizados en machine learning y pueden realizar tareas de clasificación o regresión (acrónimo del inglés CART). La comprensión de su funcionamiento suele ser simple y a la vez muy potente.

Utilizamos mentalmente estructuras de árbol de decisión constantemente en nuestra vida diaria sin darnos cuenta:

Continue reading “Arbol de Decisión en Python: Clasificación y predicción.”

Aprendizaje Profundo: una Guía rápida

Explicando Deep Learning y Redes Neuronales -sin código-

Intentaré explicar brevemente en qué consiste el Deep Learning ó Aprendizaje Profundo utilizado en Machine Learning describiendo sus componentes básicos.

Conocimientos Previos

Daré por sentado que el lector ya conoce la definición de Machine Learning y sus principales aplicaciones en el mundo real y el panorama de algoritmos utilizados con mayor frecuencia. Nos centraremos en Aprendizaje Profundo aplicando Redes Neuronales Artificiales.

Entonces, ¿cómo funciona el Deep Learning? Mejor un Ejemplo

El Aprendizaje Profundo es un método del Machine Learning que nos permite entrenar una Inteligencia Artificial para obtener una predicción dado un conjunto de entradas. Se puede utilizar Aprendizaje Supervisado o No Supervisado.

Explicaré como funciona el Deep Learning mediante un ejemplo hipotético de un servicio de predicción de quién ganará el próximo mundial de futbol. Utilizaremos aprendizaje supervisado mediante algoritmos de Redes Neuronales Artificiales.

Para lograr las predicciones de los partidos de fútbol usaremos como ejemplo las siguientes entradas:

Continue reading “Aprendizaje Profundo: una Guía rápida”

Principales Algoritmos usados en Machine Learning

En esta etapa de estudio sobre el Aprendizaje Automático me he topado con diversos algoritmos que voy reutilizando para la resolución de problemas y que se repiten con mayor frecuencia. Realizaré un listado con una breve descripción de los principales algoritmos utilizados en Machine Learning. Además cada uno contará con enlaces a ejemplos de desarrollo en código Python. Con el tiempo, agregaré mis propios ejemplos en español. También te recomiendo leer mi artículo sobre Deep Learning.

Empecemos!

Algoritmos de Regresión

Algoritmos de Regresión
Algoritmos de Regresión, Logístico o Lineal. Nos ayudan a clasificar o predecir valores. Se intentará compensar la mejor respuesta a partir del menor error.

Los algoritmos de Regresión modelan la relación entre distintas variables (features) utilizando una medida de error que se intentará minimizar en un proceso iterativo para poder realizar predicciones “lo más acertadas posible”. Se utilizan mucho en el análisis estadístico. El ejemplo clásico es la predicción de precios de Inmuebles a partir de sus características: cantidad de ambientes del piso, barrio, distancia al centro, metros cuadrados del piso, etc.
Los Algoritmos más usados de Regresión son:

Algoritmos basados en Instancia

Continue reading “Principales Algoritmos usados en Machine Learning”

7 pasos del Machine Learning para construir tu máquina

Describiré los 7 pasos genéricos que debes seguir para construir tu propia Inteligencia Artificial con Machine Learning.

Paso 1: Colectar Datos

Dada la problemática que deseas resolver, deberás investigar y obtener datos que utilizaras para alimentar a tu máquina. Importa mucho la calidad y cantidad de información que consigas ya que impactará directamente en lo bien o mal que luego funcione nuestro modelo. Puede que tengas la información en una base de datos ya existente o que la debas crear desde cero. Si es un pequeño proyecto puedes crear una planilla de cálculos que luego se exportará fácilmente como archivo csv.

Paso 2: Preparar los datos

Es importante mezclar “las cartas” que obtengas ya que el orden en que se procesen los datos dentro de tu máquina no debe de ser determinante.
También es un buen momento para hacer visualizaciones de nuestros datos y revisar si hay correlaciones entre las distintas características (“features”, suelen ser las columnas de nuestra base datos o archivo) que obtuvimos. Deberemos tener balanceada la cantidad de datos que tenemos para cada resultado, para que sea representativo, ya que si no, el aprendizaje podrá ser tendencioso hacia un tipo de respuesta y cuando nuestro modelo intente generalizar el conocimiento fallará.
También deberemos separar los datos en en dos grupos: uno para entrenamiento y otro para evaluación del modelo. Podemos fraccionar aproximadamente en una proporción de 80/20 pero puede variar según el caso y el volumen de datos que tengamos.
En esta etapa también podemos preprocesar nuestros datos normalizando, eliminar duplicados y hacer corrección de errores.

Paso 3: Elegir el modelo

Continue reading “7 pasos del Machine Learning para construir tu máquina”