Clasificación de Imágenes en Python

Crearemos una Convolutional Neural Network con Keras y Tensorflow en Python para reconocimiento de Imágenes.

En este artículo iremos directo al grano: veremos el código que crea la red neuronal para visión por computador. En un próximo artículo explicaré bien los conceptos utilizados, pero esta vez haremos un aprendizaje Top-down 😉

Ejercicio Propuesto: Clasificar imágenes de deportes

Para el ejercicio se me ocurrió crear “mi propio set MNIST” con imágenes de deportes. Para ello, seleccioné los 10 deportes más populares del mundo -según la sabiduría de internet- : Fútbol, Basket, Golf, Futbol Americano, Tenis, Fórmula 1, Ciclismo, Boxeo, Beisball y Natación (enumerados sin orden particular entre ellos).

Obtuve entre 5000 y 9000 imágenes de cada deporte, a partir de videos de Youtube (usando a FFMpeg!). Las imágenes están en tamaño <<diminuto>> de 21×28 pixeles en color y son un total de 77.000. Si bien el tamaño en pixeles puede parecer pequeño ES SUFICIENTE para que nuestra red neuronal pueda distinguirlas!!! (¿increíble, no?).

Entonces el objetivo es que nuestra máquina: “red neuronal convolucional” aprenda a clasificar -por sí sóla-, dada una nueva imagen, de qué deporte se trata.

Ejemplo de imágenes de los deportes más populares del mundo

Dividiremos el set de datos en 80-20 para entrenamiento y para test. A su vez, el conjunto de entrenamiento también lo subdividiremos en otro 80-20 para Entrenamiento y Validación en cada iteración (EPOCH) de aprendizaje.

Una muestra de las imágenes del Dataset que he titulado sportsMNIST. Contiene más de 70.000 imágenes de los 10 deportes más populares del mundo.

Continue reading “Clasificación de Imágenes en Python”

Comprende Principal Component Analysis

En este artículo veremos una herramienta muy importante para nuestro kit de Machine Learning y Data Science: PCA para Reducción de dimensiones. Como bonus-track veremos un ejemplo rápido-sencillo en Python usando Scikit-learn.

Introducción a PCA

Imaginemos que queremos predecir los precios de alquiler de vivienda del mercado. Al recopilar información de diversas fuentes tendremos en cuenta variables como tipo de vivienda, tamaño de vivienda, antigüedad, servicios, habitaciones, con/sin jardín, con/sin piscina, con/sin muebles  pero también podemos tener en cuenta la distancia al centro, si hay colegio en las cercanías, o supermercados, si es un entorno ruidoso, si tiene autopistas en las cercanías, la “seguridad del barrio”, si se aceptan mascotas, tiene wifi, tiene garaje, trastero… y seguir y seguir sumando variables.

Es posible que cuanta más (y mejor) información, obtengamos una predicción más acertada. Pero también empezaremos a notar que la ejecución de nuestro algoritmo seleccionado (regresión lineal, redes neuronales, etc.) empezará a tomar más y más tiempo y recursos. Es posible que algunas de las variables sean menos importantes y no aporten demasiado valor a la predicción. También podríamos acercarnos peligrosamente a causar overfitting al modelo.

¿No sería mejor tomar menos variables, pero más valiosas?

Continue reading “Comprende Principal Component Analysis”

¿Comprar casa o Alquilar? Naive Bayes usando Python

Hoy veremos un nuevo ejercicio práctico, intentando llevar los algoritmos de Machine Learning a ejemplos claros y de la vida real, repasaremos la teoría del Teorema de Bayes de estadística para poder tomar una decisión muy importante: ¿me conviene comprar casa ó alquilar?

Veamos si la Ciencia de Datos nos puede ayudar a resolver el misterio… ¿Si alquilo estoy tirando el dinero a la basura? ó ¿Es realmente conveniente pagar una hipoteca durante el <<resto de mi vida>>?

Si bien tocaremos el tema livianamente -sin meternos en detalles como intereses de hipotecas variable/fija, porcentajes, comisiones de bancos,etc- haremos un planteo genérico para obtener resultados y tomar la mejor decisión dada nuestra condición actual.

En artículos pasados vimos diversos algoritmos Supervisados del Aprendizaje Automático que nos dejan clasificar datos y/o obtener predicciones o asistencia a la toma de decisiones (árbol de decisión, regresión logística y lineal, red neuronal). Por lo general esos algoritmos intentan minimizar algún tipo de coste iterando las entradas y las salidas y ajustando internamente las “pendientes” ó “pesos” para hallar una salida. Esta vez, el algoritmo que usaremos se basa completamente en teoría de probabilidades  y obteniendo resultados estadísticos. ¿Será suficiente el Teorema de Bayes para obtener buenas decisiones? Veamos!

Continue reading “¿Comprar casa o Alquilar? Naive Bayes usando Python”

Clasificar con K-Nearest-Neighbor ejemplo en Python

K-Nearest-Neighbor es un algoritmo basado en instancia de tipo supervisado de Machine Learning. Puede usarse para clasificar nuevas muestras (valores discretos) o para predecir (regresión, valores continuos). Al ser un método sencillo, es ideal para introducirse en el mundo del  Aprendizaje Automático. Sirve esencialmente para clasificar valores buscando los puntos de datos “más similares” (por cercanía) aprendidos en la etapa de entrenamiento (ver 7 pasos para crear tu ML) y haciendo conjeturas de nuevos puntos basado en esa clasificación.

A diferencia de K-means, que es un algoritmo no supervisado y donde la “K” significa la cantidad de “grupos” (clusters) que deseamos clasificar, en K-Nearest Neighbor la “K” significa la cantidad de “puntos vecinos” que tenemos en cuenta en las cercanías para clasificar los “n” grupos -que ya se conocen de antemano, pues es un algoritmo supervisado-.

¿Qué es el algoritmo k-Nearest Neighbor ?

Continue reading “Clasificar con K-Nearest-Neighbor ejemplo en Python”

Regresión Lineal en español con Python

¿Qué es la regresión lineal?

La regresión lineal es un algoritmo de aprendizaje supervisado que se utiliza en Machine Learning y en estadística. En su versión más sencilla, lo que haremos es “dibujar una recta” que nos indicará la tendencia de un conjunto de datos continuos (si fueran discretos, utilizaríamos Regresión Logística).

En estadísticas, regresión lineal es una aproximación para modelar la relación entre una variable escalar dependiente “y” y una o mas variables explicativas nombradas con “X”.

Recordemos rápidamente la fórmula de la recta:

Y = mX + b

Donde Y es el resultado, X es la variable, m la pendiente (o coeficiente) de la recta y b la constante o también conocida como el “punto de corte con el eje Y” en la gráfica (cuando X=0)

Aqui vemos un ejemplo donde vemos datos recabados sobre los precios de las pizzas en Dinamarca (los puntos en rojo) y la linea negra es la tendencia. Esa es la línea de regresión que buscamos que el algoritmo aprenda y calcule sólo.

¿Cómo funciona el algoritmo de regresión lineal en Machine Learning?

Continue reading “Regresión Lineal en español con Python”