¿Comprar casa o Alquilar? Naive Bayes usando Python

Hoy veremos un nuevo ejercicio práctico, intentando llevar los algoritmos de Machine Learning a ejemplos claros y de la vida real, repasaremos la teoría del Teorema de Bayes de estadística para poder tomar una decisión muy importante: ¿me conviene comprar casa ó alquilar?

Veamos si la Ciencia de Datos nos puede ayudar a resolver el misterio… ¿Si alquilo estoy tirando el dinero a la basura? ó ¿Es realmente conveniente pagar una hipoteca durante el <<resto de mi vida>>?

Si bien tocaremos el tema livianamente -sin meternos en detalles como intereses de hipotecas variable/fija, porcentajes, comisiones de bancos,etc- haremos un planteo genérico para obtener resultados y tomar la mejor decisión dada nuestra condición actual.

En artículos pasados vimos diversos algoritmos Supervisados del Aprendizaje Automático que nos dejan clasificar datos y/o obtener predicciones o asistencia a la toma de decisiones (árbol de decisión, regresión logística y lineal, red neuronal). Por lo general esos algoritmos intentan minimizar algún tipo de coste iterando las entradas y las salidas y ajustando internamente las “pendientes” ó “pesos” para hallar una salida. Esta vez, el algoritmo que usaremos se basa completamente en teoría de probabilidades  y obteniendo resultados estadísticos. ¿Será suficiente el Teorema de Bayes para obtener buenas decisiones? Veamos!

Continue reading “¿Comprar casa o Alquilar? Naive Bayes usando Python”

Clasificar con K-Nearest-Neighbor ejemplo en Python

K-Nearest-Neighbor es un algoritmo basado en instancia de tipo supervisado de Machine Learning. Puede usarse para clasificar nuevas muestras (valores discretos) o para predecir (regresión, valores continuos). Al ser un método sencillo, es ideal para introducirse en el mundo del  Aprendizaje Automático. Sirve esencialmente para clasificar valores buscando los puntos de datos “más similares” (por cercanía) aprendidos en la etapa de entrenamiento (ver 7 pasos para crear tu ML) y haciendo conjeturas de nuevos puntos basado en esa clasificación.

A diferencia de K-means, que es un algoritmo no supervisado y donde la “K” significa la cantidad de “grupos” (clusters) que deseamos clasificar, en K-Nearest Neighbor la “K” significa la cantidad de “puntos vecinos” que tenemos en cuenta en las cercanías para clasificar los “n” grupos -que ya se conocen de antemano, pues es un algoritmo supervisado-.

¿Qué es el algoritmo k-Nearest Neighbor ?

Continue reading “Clasificar con K-Nearest-Neighbor ejemplo en Python”

Regresión Lineal en español con Python

¿Qué es la regresión lineal?

La regresión lineal es un algoritmo de aprendizaje supervisado que se utiliza en Machine Learning y en estadística. En su versión más sencilla, lo que haremos es “dibujar una recta” que nos indicará la tendencia de un conjunto de datos continuos (si fueran discretos, utilizaríamos Regresión Logística).

En estadísticas, regresión lineal es una aproximación para modelar la relación entre una variable escalar dependiente “y” y una o mas variables explicativas nombradas con “X”.

Recordemos rápidamente la fórmula de la recta:

Y = mX + b

Donde Y es el resultado, X es la variable, m la pendiente (o coeficiente) de la recta y b la constante o también conocida como el “punto de corte con el eje Y” en la gráfica (cuando X=0)

Aqui vemos un ejemplo donde vemos datos recabados sobre los precios de las pizzas en Dinamarca (los puntos en rojo) y la linea negra es la tendencia. Esa es la línea de regresión que buscamos que el algoritmo aprenda y calcule sólo.

¿Cómo funciona el algoritmo de regresión lineal en Machine Learning?

Continue reading “Regresión Lineal en español con Python”