Ejemplo Web Scraping en Python: IBEX35® la Bolsa de Madrid

En este artículo aprenderemos a utilizar la librería BeatifulSoap de Python para obtener contenidos de páginas webs de manera automática.

En internet encontramos de todo: artículos, noticias, estadísticas e información útil (¿e inútil?), pero ¿cómo la extraemos? No siempre se encuentra en forma de descarga ó puede haber información repartida en multiples dominios, ó puede que necesitemos información histórica, de webs que cambian con el tiempo.

Para poder generar nuestros propios archivos con los datos que nos interesan y de manera automática es que utilizaremos la técnica de WebScraping.

Contenidos:

  • Requerimientos para WebScraping
  • Lo básico de HTML y CSS que debes saber
  • Inspeccionar manualmente una página web
  • Al código! Obtener el valor actual del IBEX35® de la Bolsa de Madrid
  • Exportar a archivo csv (y poder abrir en Excel)
  • Otros casos frecuentes de “rascar la web”

Puedes ver y descargar el código python completo de este artículo desde GitHub haciendo click aquí

Seguir Leyendo

Procesamiento del Lenguaje Natural (NLP)

¿Qué es Natural Language Processing?

El Procesamiento del Lenguaje Natural (NLP por sus siglas en inglés) es el campo de estudio que se enfoca en la comprensión mediante ordenador del lenguaje humano. Abarca parte de la Ciencia de Datos, Inteligencia Artificial (Aprendizaje Automático) y la lingüística.

En NLP las computadoras analizan el leguaje humano, lo interpretan y dan significado para que pueda ser utilizado de manera práctica. Usando NLP podemos hacer tareas como resumen automático de textos, traducción de idiomas, extracción de relaciones, Análisis de sentimiento, reconocimiento del habla y clasificación de artículos por temáticas.

El gran desafío

Seguir Leyendo

¿Cómo funcionan las Convolutional Neural Networks? Visión por Ordenador

En este artículo intentaré explicar la teoría relativa a las Redes Neuronales Convolucionales (en inglés CNN) que son el algoritmo utilizado en Aprendizaje Automático para dar la capacidad de “ver” al ordenador. Gracias a esto, desde apenas 1998, podemos clasificar imágenes, detectar diversos tipos de tumores automáticamente, enseñar a conducir a los coches autónomos y un sinfín de otras aplicaciones.

El tema es bastante complejo/complicado e intentaré explicarlo lo más claro posible. En este artículo doy por sentado que tienes conocimientos básicos de cómo funciona una red neuronal artificial multicapa feedforward (fully connected). Si no es así te recomiendo que antes leas sobre ello:

¿Qúe es una CNN? ¿Cómo puede ver una red neuronal? ¿Cómo clasifica imagenes y distingue un perro de un gato?

La CNN es un tipo de Red Neuronal Artificial con aprendizaje supervisado que procesa sus capas imitando al cortex visual del ojo humano para identificar distintas características en las entradas que en definitiva hacen que pueda identificar objetos y “ver”. Para ello, la CNN contiene varias capas ocultas especializadas y con una jerarquía: esto quiere decir que las primeras capas pueden detectar lineas, curvas y se van especializando hasta llegar a capas más profundas que reconocen formas complejas como un rostro o la silueta de un animal.

Necesitaremos…

Recodemos que la red neuronal deberá aprender por sí sola a reconocer una diversidad de objetos dentro de imágenes y para ello necesitaremos una gran cantidad de imágenes -lease más de 10.000 imágenes de gatos, otras 10.000 de perros,…- para que la red pueda captar sus características únicas -de cada objeto- y a su vez, poder generalizarlo -esto es que pueda reconocer como gato tanto a un felino negro, uno blanco, un gato de frente, un gato de perfil, gato saltando, etc.-

Pixeles y neuronas

Seguir Leyendo

Comprende Principal Component Analysis

En este artículo veremos una herramienta muy importante para nuestro kit de Machine Learning y Data Science: PCA para Reducción de dimensiones. Como bonus-track veremos un ejemplo rápido-sencillo en Python usando Scikit-learn.

Introducción a PCA

Imaginemos que queremos predecir los precios de alquiler de vivienda del mercado. Al recopilar información de diversas fuentes tendremos en cuenta variables como tipo de vivienda, tamaño de vivienda, antigüedad, servicios, habitaciones, con/sin jardín, con/sin piscina, con/sin muebles  pero también podemos tener en cuenta la distancia al centro, si hay colegio en las cercanías, o supermercados, si es un entorno ruidoso, si tiene autopistas en las cercanías, la “seguridad del barrio”, si se aceptan mascotas, tiene wifi, tiene garaje, trastero… y seguir y seguir sumando variables.

Es posible que cuanta más (y mejor) información, obtengamos una predicción más acertada. Pero también empezaremos a notar que la ejecución de nuestro algoritmo seleccionado (regresión lineal, redes neuronales, etc.) empezará a tomar más y más tiempo y recursos. Es posible que algunas de las variables sean menos importantes y no aporten demasiado valor a la predicción. También podríamos acercarnos peligrosamente a causar overfitting al modelo.

¿No sería mejor tomar menos variables, pero más valiosas?

Seguir Leyendo

Breve Historia de las Redes Neuronales Artificiales

Arquitecturas y Aplicaciones de las Redes Neuronales más usadas.

Vamos a hacer un repaso por las diversas estructuras inventadas, mejoradas y utilizadas a lo largo de la historia para crear redes neuronales y sacar el mayor potencial al Deep Learning para resolver toda clase de problemas de regresión y clasificación.

Evolución de las Redes Neuronales en Ciencias de la Computación

Vamos a revisar las siguientes redes/arquitecturas:

  • 1958 – Perceptron
  • 1965 – Multilayer Perceptron
  • 1980’s
    • Neuronas Sigmoidales
    • Redes Feedforward
    • Backpropagation
  • 1989 – Convolutional neural networks (CNN) / Recurent neural networks (RNN)
  • 1997 – Long short term memory (LSTM)
  • 2006 – Deep Belief Networks (DBN): Nace deep learning
    • Restricted Boltzmann Machine
    • Encoder / Decoder = Auto-encoder
  • 2014 – Generative Adversarial Networks (GAN)

Si bien esta lista no es exhaustiva y no se abarcan todos los modelos creados desde los años 50, he recopilado las que fueron -a mi parecer- las redes y tecnologías más importantes desarrolladas para llegar al punto en que estamos hoy: el Aprendizaje Profundo.

El inicio de todo: la neurona artificial

Seguir Leyendo

Qué es overfitting y underfitting y cómo solucionarlo

Las principales causas al obtener malos resultados en Machine Learning son el overfitting o el underfitting de los datos. Cuando entrenamos nuestro modelo intentamos “hacer encajar” -fit en inglés- los datos de entrada entre ellos y con la salida. Tal vez se pueda traducir overfitting como “sobreajuste” y underfitting  como “subajuste” y hacen referencia al fallo de nuestro modelo al generalizar -encajar- el conocimiento que pretendemos que adquieran. Lo explicaré a continuación con un ejemplo.

Generalización del Conocimiento

Como si se tratase de un ser humano, las máquinas de aprendizaje deberán ser capaces de generalizar conceptos. Supongamos que vemos un perro Labrador por primera vez en la vida y nos dicen “eso es un perro”. Luego nos enseñan un Caniche y nos preguntan: ¿eso es un perro? Diremos “No”, pues no se parece en nada a lo que aprendimos anteriormente. Ahora imaginemos que nuestro tutor nos muestra un libro con fotos de 10 razas de perros distintas. Cuando veamos una raza de perro que desconocíamos seguramente seremos capaces de reconocer al cuadrúpedo canino al tiempo de poder discernir en que un gato no es un perro, aunque sea peludo y tenga 4 patas.

Seguir Leyendo