predicción | Aprende Machine Learning https://www.aprendemachinelearning.com en Español Sat, 19 Dec 2020 17:36:03 +0000 en-US hourly 1 https://wordpress.org/?v=6.4.3 https://www.aprendemachinelearning.com/wp-content/uploads/2017/11/cropped-icon_red_neuronal-1-32x32.png predicción | Aprende Machine Learning https://www.aprendemachinelearning.com 32 32 134671790 Sets de Entrenamiento, Test y Validación https://www.aprendemachinelearning.com/sets-de-entrenamiento-test-validacion-cruzada/ https://www.aprendemachinelearning.com/sets-de-entrenamiento-test-validacion-cruzada/#comments Tue, 03 Mar 2020 08:00:00 +0000 https://www.aprendemachinelearning.com/?p=7152 Vamos a comentar las diferencias entre los conjuntos de Entrenamiento, Validación y Test utilizados en Machine Learning ya que suele haber bastante confusión en para qué es cada uno y cómo utilizarlos adecuadamente. Intentaré hacerlo mediante un ejemplo práctico por eso de ser didácticos 🙂...

The post Sets de Entrenamiento, Test y Validación first appeared on Aprende Machine Learning.

]]>
Vamos a comentar las diferencias entre los conjuntos de Entrenamiento, Validación y Test utilizados en Machine Learning ya que suele haber bastante confusión en para qué es cada uno y cómo utilizarlos adecuadamente.

Intentaré hacerlo mediante un ejemplo práctico por eso de ser didácticos 🙂

Además veremos que tenemos distintas técnicas de hacer la validación del modelo y aplicarlas con Scikit Learn en Python.

Un nuevo Mundo

Al principio de los tiempos, sólo tenemos un conjunto Pangea que contiene todo nuestro dato disponible. Digamos que tenemos un archivo csv con 10.000 registros.

Para entrenar nuestro modelo de Machine Learning y poder saber si está funcionando bien, alguien dijo: Separemos el conjunto de datos inicial en 2: conjunto de entrenamiento (train) y conjunto de Pruebas (test). Por lo general se divide haciendo “80-20”. Y se toman muestras aleatorias -no en secuencia, si no, mezclado.

Para hacer el ejemplo sencillo, supongamos que queremos hacer clasificación usando un algoritmo supervisado, con lo cual tendremos:

  • X_train con 8.000 registros para entrenar
  • y_train con las “etiquetas” de los resultados esperados de X_train
  • X_test con 2.000 registros para test
  • y_test con las “etiquetas” de los resultados de X_test

Hágase el conjunto de Test

Lo interesante y a destacar de esto es que una vez los separamos en 8.000 registros para entrenar y 2.000 para probar, usaremos sólo esos 8.000 registros para alimentar al modelo al entrenarlo haciendo:

modelo.fit(X_train, y_train)

Luego de entrenar nuestro modelo y habiendo decidido como métrica de negocio el Accuracy (el % de aciertos) obtenemos un 75% sobre el set de entrenamiento (y asumimos que ese porcentaje nos sirve para nuestro objetivo de negocio).

Los 2.000 registros que separamos en X_test aún nunca han pasado por el modelo de ML. ¿Se entiende esto? porque eso es muy importante!!! Cuando usemos el set de test, haremos:

modelo.predict(X_test)

Como verás, no estamos usando fit()!!! sólo pasaremos los datos sin la columna de “y_test” que contiene las etiquetas. Además remarco que estamos haciendo predicción; me refiero a que el modelo NO se está entrenando ni <<incorporando conocimiento>>. El modelo se limita a “ver la entrada y escupir una salida”.

Cuando hacemos el predict() sobre el conjunto de test y obtenemos las predicciones, las podemos comprobar y contrastar con los valores reales almacenados en y_test y hallar así la métrica que usamos. Los resultados que nos puede dar serán:

  1. Si el accuracy en Test es <<cercano>> al de Entrenamiento (dijimos 75%) por ejemplo en este caso si estuviera entre 65 ú 85% quiere decir que nuestro modelo entrenado está generalizando bien y lo podemos dar por bueno (siempre y cuando estemos conformes con las métricas obtenidas).
  2. Si el Accuracy en Test es muy distinto al de Entrenamiento tanto por encima como por debajo, nos da un 99% ó un 25% (lejano al 75%) entonces es un indicador de que nuestro modelo no ha entrenado bien y no nos sirve. De hecho este podría ser un indicador de Overfitting.

Para evaluar mejor el segundo caso, es donde aparece el “conjunto de Validación”.

Al Séptimo día Dios creo el Cross-Validation

Si el conjunto de Train y Test nos está dando métricas muy distintas esto es que el modelo no nos sirve.

Para mejorar el modelo, podemos pensar en Tunear sus parámetros y volver a entrenar y probar, podemos intentar obtener más registros, cambiar el preprocesado de datos, limpieza, balanceo de clases, selección de features, generación de features… De hecho, podemos pensar que seleccionamos un mal modelo, y podemos intentar con distintos modelos: de árbol de decisión, redes neuronales, ensambles

La técnica de Validación Cruzada nos ayudará a medir el comportamiento el/los modelos que creamos y nos ayudará a encontrar un mejor modelo rápidamente.

Aclaremos antes de empezar: hasta ahora contamos con 2 conjuntos: el de Train y Test. El “set de validación” no es realmente un tercer set si no que “vive” dentro del conjunto de Train. Reitero: el set de validación no es un conjunto que apartemos de nuestro archivo csv original. El set de validación se utilizará durante iteraciones que haremos con el conjunto de entrenamiento.

Técnicas de Validación Cruzada

Entonces volvamos a tener las cosas claras: SOLO tenemos conjunto de Train y Test, ok?. El de Test seguirá tratándose como antes: lo apartamos y lo usaremos al final, una vez entrenemos el modelo.

Dentro del conjunto de Train, y siguiendo nuestro ejemplo inicial, tenemos 8.000 registros. La validación más común utilizada y que nos sirve para entender el concepto es “K-folds”, vamos a comentarla:

Cross-Validation: K-fold con 5 splits

Lo que hacemos normalmente al entrenar el modelo es pasarle los 8.000 registros y que haga el fit(). Con K-Folds -en este ejemplo de 5 splits- para entrenar, en vez de pasarle todos los registros directamente al modelo, haremos así:

  • Iterar 5 veces:
    1. Apartaremos 1/5 de muestras, es decir 1600.
    2. Entrenamos al modelo con el restante 4/5 de muestras = 6400.
    3. Mediremos el accuracy obtenido sobre las 1600 que habíamos apartado.
  • Esto quiere decir que hacemos 5 entrenamientos independientes.
  • El Accuracy final será el promedio de las 5 accuracies anteriores.
En amarillo las muestras para entrenar y en verde el conjunto de Validación.

Entonces fijémonos que estamos “ocultando” una quinta parte del conjunto de train durante cada iteración. Esto es similar a lo que explique antes, pero esta vez aplicado al momento de entrenamiento. Al cabo de esas 5 iteraciones, obtenemos 5 accuracies que deberían ser “similares” entre sí, esto sería un indicador de que el modelo está funcionando bien.

Ejemplo K-Folds en Python

Veamos en código python usando la librería de data science scikit-learn como podemos hacer el cross-validation con K-Folds:

from sklearn import datasets, metrics
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.linear_model import LogisticRegression

iris = datasets.load_iris()

X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=0)

kf = KFold(n_splits=5)

clf = LogisticRegression()

clf.fit(X_train, y_train)

score = clf.score(X_train,y_train)

print("Metrica del modelo", score)

scores = cross_val_score(clf, X_train, y_train, cv=kf, scoring="accuracy")

print("Metricas cross_validation", scores)

print("Media de cross_validation", scores.mean())

preds = clf.predict(X_test)

score_pred = metrics.accuracy_score(y_test, preds)

print("Metrica en Test", score_pred)

En el ejemplo vemos los pasos descritos anteriormente:

  • Cargar el dataset
  • Dividir en Train y Test (en 80/20)
  • Creamos un modelo de Regresión Logística (podría ser otro) y lo entrenamos con los datos de Train
  • Hacemos Cross-Validation usando K-folds con 5 splits
  • Comparamos los resultados obtenidos en el modelo inicial, en el cross validation y vemos que son similares.
  • Finalmente hacemos predict sobre el Conjunto de Test y veremos que también obtenemos buen Accuracy

Más técnicas para Validación del modelo

Otras técnicas usadas y que nos provee sklearn para python son:

Stratified K-Fold

Statified K-fold es una variante mejorada de K-fold, que cuando hace los splits (las divisiones) del conjunto de train tiene en cuenta mantener equilibradas las clases. Esto es muy útil, porque imaginen que tenemos que clasificar en “SI/NO” y si una de las iteraciones del K-fold normal tuviera muestras con etiquetas sólo “SI” el modelo no podría aprender a generalizar y aprenderá para cualquier input a responder “SI”. Esto lo soluciona el Stratified K-fold.

Leave P Out

Leave P Out selecciona una cantidad P por ejemplo 100. Entonces se separarán de a 100 muestras contra las cuales validar y se iterará como se explico anteriormente. Si el valor P es pequeño, esto resultará en muchísimas iteraciones de entrenamiento con un alto coste computacional (y seguramente en tiempo). Si el valor P es muy grande, podría contener más muestras que las usadas para entrenamiento, lo cual sería absurdo. Usar esta técnica con algo de sentido común y manteniendo un equilibrio entre los scores y el tiempo de entreno.

ShuffleSplit

ShuffleSplit primero mezcla los datos y nos deja indicar la cantidad de splits (divisiones) es decir las iteraciones independientes que haremos y también indicar el tamaño del set de validación.

Instala tu ambiente de Desarrollo Python siguiendo esta guía paso a paso

Series Temporales: Atención al validar

Para problemas de Series temporales tenemos que prestar especial cuidado con los datos. Pues si pasamos al modelo “dato futuro” antes de tiempo estaríamos haciendo Data Leakage, esto es como si le hiciéramos spoiler al modelo y le contaremos el final de la película antes de que la vea. Esto causaría overfitting.

Para empezar al hacer el split inicial de datos estos deberán estar ordenados por fecha y no podemos mezclarlos.

Para ayudarnos con el cross-validation sklearn nos provee de TimeSeriesSplit.

TimeSeriesSplit

TimeSeriesSplit es una variante adaptada de K-folds que evita “la fuga” de datos. Para hacerlo va iterando los “folds” de a uno (usando una ventana de tiempo que se desplaza) y usando el “fold más reciente” cómo el set de validación. Se puede entender mejor viendo una animación:

En Amarillo las muestras para entrenar y en verde el conjunto de Validación.

Practicar con un ejercicio en Python de Series Temporales!

Pero entonces? Cuando uso Cross-Validation?

Es una buena práctica usar cross-validation en nuestros proyectos. De hecho usarlo nos ayudará a elegir el modelo correcto y nos da mayor seguridad y respaldo ante nuestra decisión.

PERO… (siempre hay un pero)

En casos en los que hacer 1 sólo entrenamiento “normal” tome muchísimo tiempo y recursos, podría ser nuestra perdición. Imaginen que hacer un k-folds de 10 implica hacer 10 entrenos -aunque un poco más pequeños-, pero que consumirían mucho tiempo y dinero.

Entonces en la medida de lo posible siempre usar validación cruzada. Y -vuelvo a reforzar el concepto- luego se probará el modelo contra el conjunto de Pruebas (test).

Para hacer tuneo de Hiper-parámetros como RandomSearch, GridSearch ó Tuneo Bayesiano es muy útil hacer Cross-Validation.

¿Si ya estoy “conforme” y quiero llevar el modelo a un entorno de Producción?

Supongamos que el entrenamiento haciendo Cross Validation y el predict() en Test nos están dando buenos accuracy (y similares) y estamos conformes con nuestro modelo. PUES si lo queremos usar en un entorno REAL y productivo, ANTES de publicarlo es recomendado que agreguemos el conjunto de test al modelo!!!, pues así estaremos aprovechando el 100% de nuestros datos. Espero que esto último también se entienda porque es super importante: lo que estoy diciendo es que si al final de todas nuestras iteraciones, pre procesado de dato, mejoras de modelo, ajuste de hiper-parámetros y comparando con el conjunto de test, estamos seguros que el modelo funciona correctamente, es entonces ahora, que usaremos las 10.000 muestras para entrenar al modelo, y ese modelo final, será el que publicamos en producción.

Es una última iteración que debería mejorar el modelo final aunque este no lo podemos contrastar contra nada… excepto con su comportamiento en el entorno real.

Si esta última iteración te causara dudas, no la hagas, excepto que tu problema sea de tipo Serie Temporal. En ese caso sí que es muy importante hacerlo o quedaremos con un modelo que no “es el más actual”.

Resumen, Conclusiones y por favor Que quede claro!

Lo más importante que quisiera que quede claro es que entonces tenemos 2 conjuntos: uno de Train y otro de Test. El “conjunto de validación” no existe como tal, si no, que “vive temporalmente” al momento de entrenar y nos ayuda a obtener al mejor modelo de entre los distintos que probaremos para conseguir nuestro objetivo. Esa técnica es lo que se llama Validación Cruzada ó en inglés cross-validation.

NOTA: en los ejemplos de la documentación de sklearn podremos ver que usan las palabras train y test. Pero conceptualmente se está refiriendo al conjunto de validación y no al de Test que usaremos al final. Esto es en parte el causante de tanta confusión con este tema.

Tener en cuenta el tamaño de split 80/20 es el usual pero puede ser distinto, y esta proporción puede cambiar sustancialmente las métricas obtenidas del modelo entrenado! Ojo con eso. El tamaño ideal dependerá del dominio de nuestro problema, deberemos pensar en una cantidad de muestras para test que nos aseguren que estamos el modelo creado está funcionando correctamente. Teniendo 10.000 registros puede que con testear 1000 filas ya estemos conformes ó que necesitemos 4000 para estar mega-seguros. Por supuesto debemos recordar que las filas que estemos “quitando” para testear, no las estamos usando al entrenar.

Otro factor: al hacer el experimento y tomar las muestras mezcladas, mantener la “semilla” ó no podremos reproducir el mismo experimento para comparar y ver si mejora o no. Este suele ser un parámetro llamado “random_state” y está bien que lo usemos para fijarlo.

Recomendaciones finales:

  • En principio separar Train y Test en una proporción de 80/20
  • Hacer Cross Validation siempre que podamos:
    • No usar K-folds. Usar Stratified-K-folds en su lugar.
    • La cantidad de “folds” dependerá del tamaño del dataset que tengamos, pero la cantidad usual es 5 (pues es similar al 80-20 que hacemos con train/test).
    • Para problemas de tipo time-series usar TimeSeriesSplit
  • Si el Accuracy (ó métrica que usamos) es similar en los conjuntos de Train (donde hicimos Cross Validation) y Test, podemos dar por bueno al modelo.

Recibe los artículos del Blog

Recibe los próximos artículos sobre Machine Learning, estrategias, teoría y código Python en tu casilla de correo!

NOTA: algunos usuarios reportaron que el email de confirmación y/o posteriores a la suscripción entraron en su carpeta de SPAM. Te sugiero que revises y recomiendo que agregues nuestro remitente a tus contactos para evitar problemas. Gracias!

Recursos Adicionales

Otros artículos interesantes en inglés:

El libro del Blog

Si te gustan los contenidos del blog y quieres darme una mano, puedes comprar el libro en papel, ó en digital.

The post Sets de Entrenamiento, Test y Validación first appeared on Aprende Machine Learning.

]]>
https://www.aprendemachinelearning.com/sets-de-entrenamiento-test-validacion-cruzada/feed/ 7 7152
Sistemas de Recomendación https://www.aprendemachinelearning.com/sistemas-de-recomendacion/ https://www.aprendemachinelearning.com/sistemas-de-recomendacion/#comments Tue, 27 Aug 2019 18:00:00 +0000 https://www.aprendemachinelearning.com/?p=5989 Crea en Python un motor de recomendación con Collaborative Filtering Una de las herramientas más conocidas y utilizadas que aportó el Machine Learning fueron los sistemas de Recomendación. Son tan efectivas que estamos invadidos todos los días por recomendaciones, sugerencias y “productos relacionados” aconsejados por...

The post Sistemas de Recomendación first appeared on Aprende Machine Learning.

]]>
Crea en Python un motor de recomendación con Collaborative Filtering

Una de las herramientas más conocidas y utilizadas que aportó el Machine Learning fueron los sistemas de Recomendación. Son tan efectivas que estamos invadidos todos los días por recomendaciones, sugerencias y “productos relacionados” aconsejados por distintas apps y webs.

Sin dudas, los casos más conocidos de uso de esta tecnología son Netflix acertando en recomendar series y películas, Spotify sugiriendo canciones y artistas ó Amazon ofreciendo productos de venta cruzada <<sospechosamente>> muy tentadores para cada usuario.

Pero también Google nos sugiere búsquedas relacionadas, Android aplicaciones en su tienda y Facebook amistades. O las típicas “lecturas relacionadas” en los blogs y periódicos.

Todo E-Comerce que se precie de serlo debe utilizar esta herramienta y si no lo hace… estará perdiendo una ventaja competitiva para potenciar sus ventas.

¿Qué son los Sistemas ó Motores de Recomendación?

Los sistemas de recomendación, a veces llamados en inglés “recommender systems” son algoritmos que intentan “predecir” los siguientes ítems (productos, canciones, etc.) que querrá adquirir un usuario en particular.

Antes del Machine Learning, lo más común era usar “rankings” ó listas con lo más votado, ó más popular de entre todos los productos. Entonces a todos los usuarios se les recomendaba lo mismo. Es una técnica que aún se usa y en muchos casos funciona bien, por ejemplo, en librerías ponen apartados con los libros más vendidos, best sellers. Pero… ¿y si pudiéramos mejorar eso?… ¿si hubiera usuarios que no se guían como un rebaño y no los estamos reteniendo?…

Los Sistemas de Recomendación intentan personalizar al máximo lo que ofrecerán a cada usuario. Esto es ahora posible por la cantidad de información individual que podemos recabar de las personas y nos da la posibilidad de tener una mejor tasa de aciertos, mejorando la experiencia del internauta sin ofrecer productos a ciegas.

Tipos de motores

Entre las estrategias más usadas para crear sistemas de recomendación encontramos:

  • Popularity: Aconseja por la “popularidad” de los productos. Por ejemplo, “los más vendidos” globalmente, se ofrecerán a todos los usuarios por igual sin aprovechar la personalización. Es fácil de implementar y en algunos casos es efectiva.
  • Content-based: A partir de productos visitados por el usuario, se intenta “adivinar” qué busca el usuario y ofrecer mercancías similares.
  • Colaborative: Es el más novedoso, pues utiliza la información de “masas” para identificar perfiles similares y aprender de los datos para recomendar productos de manera individual.

En este artículo comentaré mayormente el Collaborative Filtering y realizaremos un ejercicio en Python.

¿Cómo funciona Collaborative Filtering?

Para explicar cómo funciona Collaborative Filtering vamos a entender cómo será el dataset.

Ejemplo de Dataset

Necesitaremos, “ítems” y las valoraciones de los usuarios. Los ítems pueden ser, canciones, películas, productos, ó lo que sea que queremos recomendar.

Entonces nos quedará una matriz de este tipo, donde la intersección entre fila y columna es una valoración del usuario:

En esta “gráfica educativa” tenemos una matriz con productos (a la izquierda) y los ítems (arriba). En este ejemplo los ítems serán frutas y cada celda contiene la valoración hecha por cada usuario de ese ítem. Las casillas vacías significa que el usuario aún no ha probado esa fruta.

Entonces veremos que tenemos “huecos” en la tabla pues evidentemente no todos los usuarios tienen o “valoraron” todos los ítems. Por ejemplo si los ítems fueran “películas”, es evidente que un usuario no habrá visto <<todas las películas del mundo>>… entonces esos huecos son justamente los que con nuestro algoritmo “rellenaremos” para recomendar ítems al usuario.

Una matriz con muchas celdas vacías se dice -en inglés- que es sparce (y suele ser normal) en cambio si tuviéramos la mayoría de las celdas cubiertas con valoraciones, se llamará dense.

Tipos de Collaborative Filtering

  • User-based: (Este es el que veremos a continuación)
    • Se identifican usuarios similares
    • Se recomiendan nuevos ítems a otros usuarios basado en el rating dado por otros usuarios similares (que no haya valorado este usuario)
  • Item-based:
    • Calcular la similitud entre items
    • Encontrar los “mejores items similares” a los que un usuario no tenga evaluados y recomendárselos.

Predecir gustos (User-based)

Collaborative Filtering intentará encontrar usuarios similares, para ofrecerle ítems “bien valorados” para ese perfil en concreto (lo que antes llamé “rellenar los huecos” en la matriz). Hay diversas maneras de medir ó calcular la similitud entre usuarios y de ello dependerá que se den buenas recomendaciones. Pero tengamos en cuenta que estamos hablando de buscar similitud entre “gustos” del usuario sobre esos ítems, me refiero a que no buscaremos perfiles similares por ser del mismo sexo, edad ó nivel educativo. Sólo nos valdremos de los ítems que ha experimentado, valorado (y podría ser su secuencia temporal) para agrupar usuarios “parecidos”.

Una de las maneras de medir esa similitud se llama distancia por coseno de los vectores y por simplificar el concepto, digamos que crea un espacio vectorial con n dimensiones correspondientes a los n items y sitúa los vectores siendo su medida el “valor rating” de cada usuario -a ese item-. Luego calcula el ángulo entre los vectores partiendo de la “coordenada cero”. A “poca distancia” entre ángulos, se corresponde con usuarios con mayor similitud.

Este método no es siempre es perfecto… pero es bastante útil y rápido de calcular.

Calcular los Ratings

Una vez que tenemos la matriz de similitud, nos valdremos de otra operación matemática para calcular las recomendaciones.

FORMULA para calcular los ratings faltantes: sería algo así como “Matriz de similitud PROD.VECTORIAL ratings / (sumatoria de cada fila de ratings) Transpuesta

Lo haremos es: cada rating se multiplica por el factor de similitud de usuario que dio el rating. La predicción final por usuario será igual a la suma del peso de los ratings dividido por la “suma ponderada”.

Bueno, no te preocupes que este cálculo luego lo verás en código y no tiene tanto truco…

Ejercicio en Python: “Sistema de Recomendación de Repositorios Github”

Vamos a crear un motor de recomendación de repositorios Github. Es la propuesta que hago en el blog… porque los recomendadores de música, películas y libros ya están muy vistos!.

La idea es que si este recomendador le parece de interés a los lectores, en un futuro, publicarlo online para extender su uso. Inicialmente contaremos con un set de datos limitado (pequeño), pero que como decía, podremos llevar a producción e ir agregando usuarios y repositorios para mejorar las sugerencias.

Vamos al código!

Cargamos las librerías que utilizaremos

import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.neighbors import NearestNeighbors
import matplotlib.pyplot as plt
import sklearn

Cargamos y previsualizamoás los 3 archivos de datos csv que utilizaremos:

df_users = pd.read_csv("users.csv")
df_repos = pd.read_csv("repos.csv")
df_ratings = pd.read_csv("ratings.csv")
print(df_users.head())
print(df_repos.head())
print(df_ratings.head())

Vemos que tenemos un archivo con la información de los usuarios y sus identificadores, un archivo con la información de los repositorios y finalmente el archivo “ratings” que contiene la valoración por usuario de los repositorios. Como no tenemos REALMENTE una valoración del 1 al 5 -como podríamos tener por ejemplo al valorar películas-, la columna rating es el número de usuarios que tienen ese mismo repositorio dentro de nuestra base de datos. Sigamos explorando para comprende un poco mejor:

n_users = df_ratings.userId.unique().shape[0]
n_items = df_ratings.repoId.unique().shape[0]
print (str(n_users) + ' users')
print (str(n_items) + ' items')

30 users
167 items

Vemos que es un dataset reducido, pequeño. Tenemos 30 usuarios y 167 repositorios valorados.

plt.hist(df_ratings.rating,bins=8)

Tenemos más de 80 valoraciones con una puntuación de 1 y unas 40 con puntuación en 5. Veamos las cantidades exactas:

df_ratings.groupby(["rating"])["userId"].count()

rating
1 94
2 62
3 66
4 28
5 40
6 12
7 14
8 8
Name: userId, dtype: int64

plt.hist(df_ratings.groupby(["repoId"])["repoId"].count(),bins=8)

Aquí vemos la cantidad de repositorios y cuantos usuarios “los tienen”. La mayoría de repos los tiene 1 sólo usuario, y no los demás. Hay unos 30 que los tienen 2 usuarios y unos 20 que coinciden 3 usuarios. La suma total debe dar 167.

Creamos la matriz usuarios/ratings

Ahora crearemos la matriz en la que cruzamos todos los usuarios con todos los repositorios.

df_matrix = pd.pivot_table(df_ratings, values='rating', index='userId', columns='repoId').fillna(0)
df_matrix

Vemos que rellenamos los “huecos” de la matriz con ceros. Y esos ceros serán los que deberemos reemplazar con las recomendaciones.

Sparcity

Veamos el porcentaje de sparcity que tenemos:

ratings = df_matrix.values
sparsity = float(len(ratings.nonzero()[0]))
sparsity /= (ratings.shape[0] * ratings.shape[1])
sparsity *= 100
print('Sparsity: {:4.2f}%'.format(sparsity))

Sparsity: 6.43%

Esto serán muchos “ceros” que rellenar (predecir)…

Dividimos en Train y Test set

Separamos en train y test para -más adelante- poder medir la calidad de nuestras recomendaciones.

¿Porqué es tan importante dividir en Train, Test y Validación del Modelo?

ratings_train, ratings_test = train_test_split(ratings, test_size = 0.2, random_state=42)
print(ratings_train.shape)
print(ratings_test.shape)

(24, 167)
(6, 167)

Matriz de Similitud: Distancias por Coseno

Ahora calculamos en una nueva matriz la similitud entre usuarios.

sim_matrix = 1 - sklearn.metrics.pairwise.cosine_distances(ratings)
print(sim_matrix.shape)

(30, 30)

plt.imshow(sim_matrix);
plt.colorbar()
plt.show()

Cuanto más cercano a 1, mayor similitud entre esos usuarios.

Predicciones -ó llamémosle “Sugeridos para ti”-

#separar las filas y columnas de train y test
sim_matrix_train = sim_matrix[0:24,0:24]
sim_matrix_test = sim_matrix[24:30,24:30]

users_predictions = sim_matrix_train.dot(ratings_train) / np.array([np.abs(sim_matrix_train).sum(axis=1)]).T
plt.rcParams['figure.figsize'] = (20.0, 5.0)
plt.imshow(users_predictions);
plt.colorbar()
plt.show()

Vemos pocas recomendaciones que logren puntuar alto. La mayoría estará entre 1 y 2 puntos. Esto tiene que ver con nuestro dataset pequeño.

Vamos a tomar de ejemplo mi usuario de Github que es jbagnato.

USUARIO_EJEMPLO = 'jbagnato'
data = df_users[df_users['username'] == USUARIO_EJEMPLO]
usuario_ver = data.iloc[0]['userId'] - 1 # resta 1 para obtener el index de pandas.

user0=users_predictions.argsort()[usuario_ver]

# Veamos los tres recomendados con mayor puntaje en la predic para este usuario
for i, aRepo in enumerate(user0[-3:]):
    selRepo = df_repos[df_repos['repoId']==(aRepo+1)]
    print(selRepo['title'] , 'puntaje:', users_predictions[usuario_ver][aRepo])

4 ytdl-org / youtube-dl
Name: title, dtype: object puntaje: 2.06
84 dipanjanS / practical-machine-learning-with-py…
Name: title, dtype: object puntaje: 2.44
99 abhat222 / Data-Science–Cheat-Sheet
Name: title, dtype: object puntaje: 3.36

Vemos que los tres repositorios con mayor puntaje para sugerir a mi usuario son el de Data-Science–Cheat-Sheet con una puntuación de 3.36, practical-machine-learning-with-py con 2.44 y youtube-dl con 2.06. Lo cierto es que no son puntuaciones muy altas, pero tiene que ver con que la base de datos (nuestro csv) tiene muy pocos repositorios y usuarios cargados.

Validemos el error

Sobre el test set comparemos el mean squared error con el conjunto de entrenamiento:

def get_mse(preds, actuals):
    if preds.shape[1] != actuals.shape[1]:
        actuals = actuals.T
    preds = preds[actuals.nonzero()].flatten()
    actuals = actuals[actuals.nonzero()].flatten()
    return mean_squared_error(preds, actuals)

get_mse(users_predictions, ratings_train)

# Realizo las predicciones para el test set
users_predictions_test = sim_matrix.dot(ratings) / np.array([np.abs(sim_matrix).sum(axis=1)]).T
users_predictions_test = users_predictions_test[24:30,:]

get_mse(users_predictions_test, ratings_test)

3.39
4.72

Vemos que para el conjunto de train y test el MAE es bastante cercano. Un indicador de que no tiene buenas predicciones sería si el MAE en test fuera 2 veces más (ó la mitad) del valor del de train.

Hay más…

En la notebook completa -en Github-, encontrarás más opciones de crear el Recomendador, utilizando K-Nearest Neighbors como estimador, y también usando la similitud entre ítems (ítem-based). Sin embargo para los fines de este artículo espero haber mostrado el funcionamiento básico del Collaborative Filtering. Te invito a que luego lo explores por completo.

Conclusiones

Vimos que es relativamente sencillo crear un sistema de recomendación en Python y con Machine Learning. Como muchas veces en Data-Science una de las partes centrales para que el modelo funcione se centra en tener los datos correctos y un volumen alto. También es central el valor que utilizaremos como “rating” -siendo una valoración real de cada usuario ó un valor artificial que creemos adecuado-. Recuerda que me refiero a rating como ese puntaje que surge de la intersección entre usuario e ítems en nuestro dataset. Luego será cuestión de evaluar entre las opciones de motores user-based, ítem-based y seleccionar la que menor error tenga. Y no descartes probar en el “mundo real” y ver qué porcentaje de aciertos (o feedback) te dan los usuarios reales de tu aplicación!

Existen algunas librerías que se utilizan para crear motores de recomendación como “surprise”. También te sugiero que las explores.

Por último, decir que -como en casi todo el Machine Learning- tenemos la opción de crear Redes Neuronales con Embeddings como recomendados y hasta puede que sean las que mejor funcionan para resolver esta tarea!… pero queda fuera del alcance de este tutorial. Dejaré algún enlace por ahí abajo 😉

Forma parte del Blog!

Recibe los próximos artículos sobre Machine Learning, estrategias, teoría y código Python en tu casilla de correo!

NOTA: algunos usuarios reportaron que el email de confirmación y/o posteriores a la suscripción entraron en su carpeta de SPAM. Te sugiero que revises y recomiendo que agregues nuestro remitente a tus contactos para evitar problemas. Gracias!

Recursos del Artículo

Descarga los 3 archivos csv y el Notebook con el ejercicio Python completo (y adicionales!)

Otros artículos de interés (en inglés)

The post Sistemas de Recomendación first appeared on Aprende Machine Learning.

]]>
https://www.aprendemachinelearning.com/sistemas-de-recomendacion/feed/ 25 5989
Pronóstico de Ventas con Redes Neuronales – Parte 2 https://www.aprendemachinelearning.com/pronostico-de-ventas-redes-neuronales-python-embeddings/ https://www.aprendemachinelearning.com/pronostico-de-ventas-redes-neuronales-python-embeddings/#comments Thu, 14 Mar 2019 09:00:00 +0000 https://www.aprendemachinelearning.com/?p=6692 Mejora del modelo de Series Temporales con Múltiples Variables y Embeddings Este artículo es la continuación del post anterior “Pronóstico de Series Temporales con Redes Neuronales en Python” en donde vimos cómo a partir de un archivo de entrada con las unidades vendidas por una...

The post Pronóstico de Ventas con Redes Neuronales – Parte 2 first appeared on Aprende Machine Learning.

]]>
Mejora del modelo de Series Temporales con Múltiples Variables y Embeddings

Este artículo es la continuación del post anterior “Pronóstico de Series Temporales con Redes Neuronales en Python” en donde vimos cómo a partir de un archivo de entrada con las unidades vendidas por una empresa durante años anteriores, podíamos estimar las ventas de la próxima semana. Continuaremos a partir de ese modelo -por lo que te recomiendo leer antes de continuar- y haremos propuestas para mejorar la predicción.

Breve Repaso de lo que hicimos

En el modelo del capitulo anterior creamos una Red Neuronal MLP (Multilayered Perceptron) feedforward de pocas capas, y el mayor trabajo que hicimos fue en los datos de entrada. Puesto que sólo tenemos un archivo csv con 2 columnas: fecha y unidades vendidas lo que hicimos fue transformar esa entrada en un “problema de aprendizaje supervisado“. Para ello, creamos un “nuevo archivo” de entrada con 7 columnas en donde poníamos la cantidad de unidades vendidas en los 7 días anteriores y de salida la cantidad de unidades vendidas en “la fecha actual”. De esa manera alimentamos la red y ésta fue capaz de realizar pronósticos aceptables. Sólo utilizamos la columna de unidades. Pero no utilizamos la columna de fecha. ¿Podría ser la columna de fecha un dato importante? ¿podría mejorar nuestra predicción de ventas?

Mejoras al modelo de Series Temporales

Esto es lo que haremos hoy: propongo 2 nuevos modelos con Redes Neuronales Feedforward para intentar mejorar los pronósticos de ventas:

  • Un primer modelo tomando la fecha como nueva variable de entrada valiosa y que aporta datos.
  • Un segundo modelo también usando la fecha como variable adicional, pero utilizándola con Embeddings… y a ver si mejora el pronóstico.

Por lo tanto explicaremos lo qué son los embeddings utilizados en variables categóricas (se utiliza mucho en problemas de Procesamiento del Lenguaje Natural NLP para modelar).

Para estos modelos propuestos haremos la transformación a “problema de aprendizaje supervisado”. Para ello usaremos la misma función series_to_supervised() de la web machinelearningmastery como en el artículo anterior.

Primer Mejora: Serie Temporal de múltilples Variables

Puede que el “ejemplo clásico” para comprender lo que son las Series Temporales de Múltiples Variables sea el pronóstico del tiempo, en donde tenemos varias “columnas de entrada” con la temperatura, la presión atmosférica, humedad. Con esas tres variables tendremos una mejor predicción de “la temperatura de mañana” que si tan sólo usásemos una sola feature.

Usar Fecha como variable de entrada

Como solamente tenemos un dato de entrada (las unidades vendidas en el día), intentaremos enriquecer a la red con más entradas. Para ello, usaremos la fecha. ¿Pero cómo? Bueno, aprovecharemos que podemos saber cada día que hubo ventas si fue un lunes, martes… por ejemplo algunos comercios venden más los viernes y sábados. También, como vimos que en cuanto a estacionalidad, en verano (europeo) subían las ventas, la red neuronal debería percatarse de eso y “mejorar su puntería” entendiendo que eso ocurre en los meses 7 y 8 (¿lo hará..?). No agregaré los años, pues sólo tenemos 2017 y 2018 (muy pocos), pero si tu cuentas con un dataset con muchos años, sería bueno agregar como entrada también los años.

En Limpio: Usaremos el día como variable categórica con valores de 0 a 6 indicando día de semana y usaremos el número de mes como otra variable categórica. La “intuición” es que la red <<entenderá>> las estacionalidades dadas entre semana y mensuales.

Segunda mejora: Embeddings en variables categóricas

Bien, para el segundo modelo, utilizaremos embeddings en las variables categóricas, es decir, en la columna de día y de mes. Los valores de día van del 0 al 6 representando los días de la semana. Pero no quiere decir que el día 6 “vale” más que el día 0. Son identificadores. No tendría sentido decir que jueves es mayor que domingo. Sin embargo la red neuronal esto no lo sabe y podría interpretar erróneamente esos valores (categóricos)… Con los meses lo mismo; van del 1 al 12 pero no quiere decir que “diciembre valga más que agosto”. Y de hecho, sabemos en la práctica para este ejercicio, que realmente en julio y agosto, es cuando más aumentan las ventas. Para intentar resolver esta problemática, es que aparecen los Embeddings.

¿Qué son los Embeddings? ¿por qué? ¿para qué?

La traducción al español de “Embed” es Incrustar… y esto a simple vista no nos ayuda mucho. Google lo traduce en uno de sus tutoriales como “incorporaciones“. Los embeddings son una manera de dar valoración útil- a datos categóricos. Para ello asignaremos una profundidad a cada “identificador”, es decir un vector con valores continuos inicialmente aleatorios. Esos valores se ajustarán con backpropagation al igual que nuestra red neuronal. Y finalmente nuestros datos categóricos quedan enriquecidos y dejan de ser “lunes” para ser unos vectores con valores que “significan algo”. ¿Qué significan? para simplificar e intentar entenderlo podemos decir que esos vectores “acercan identificadores similares entre sí y distancia a los opuestos”. Un ejemplo: cuando se utiliza en Natural Language Processing (NLP) con un gran número de palabras, los Embeddings logran hacer que palabras sobre sentimientos positivos -“alegría”,”felicidad”- queden cercanas pero distanciadas de las que significan sentimientos negativos “odio”,”tristeza”.

Hay un caso también muy usado llamado: Filtrado colaborativo en el cual se crea un motor de recomendaciones de películas. En ese ejemplo, se sitúan en un espacio vectorial las películas infantiles en extremo y las de adultos en otro. A su vez, otra coordenada indica si la película es “más comercial/taquillera” ó más “artística”.

En este caso “simplificado” los Embeddings se pueden ver como vectores de coordenadas (x,y) que acercan películas similares en 2 dimensiones y a su vez quedan distanciadas de Identificadores opuestos.

Sobre la dimensionalidad de los Embeddings

Es bueno usar muchas dimensiones (profundidad) para modelar nuestras variables categóricas. Pero ojo!, si tiene demasiadas, puede ocurrir overfitting. Entonces habrá que hacer prueba y error. Hay una regla que dice que hay que usar “una cuarta parte” del tamaño de la variable categórica: si tenemos 100 identificadores, usaremos como profundidad 25. En el curso de Fast.ai recomiendan un máximo de 50 ó “la cantidad de elementos categóricos más uno, dividido dos” (si es menor a 50). Pero siempre dependerá del caso.

Conclusión de Embeddings

Al asignarle vectores con valor numérico continuo a entradas categóricas , estos terminan funcionando como “una mini red neuronal” dentro de la red principal. Aprenden con backpropagation. Y resuelven como valores continuos esos identificadores discretos, acentuando su valor intrínseco.

Una ventaja de usar Embeddings es que se pueden reutilizar. Una vez entrenados podemos guardarlos para utilizarlos en otra red. Gracias a esto es que encontramos archivos de Embeddings con millones de palabras “ya entrenadas” por Google, listos para descargar y usar.

¿Y el código fuente de los modelos? Quiero Python! Exijo mi Jupyter Notebook!

Dejaré enlace a los códigos, pues me quiero centrar un más en las comparaciones y conclusiones de cada modelo, y no tanto en su implementación (cualquier duda, me escriben comentarios!). Aquí los enlaces de las 3 notebooks puedes abrirlas en pestañas nuevas

Los Resultados de los 3 modelos: Comparemos

Para intentar que las comparaciones sean lo más “justas” posibles, utilizaremos en las 3 redes neuronales las mismas funciones de activación (tanh), misma optimización (Adam) y métricas loss y score (mean_absolute_error y mean_squared_error). Además en todos los casos ejecutaremos 40 EPOCHS.

Por comodidad llamaremos a los 3 modelos:

  1. Serie Temporal de 1 variable = ST1
  2. Serie Temporal de Multiples Variables = STMV
  3. Serie Temporal con Embeddings = STE

Comparemos las Métricas

Vemos los valores finales de las métricas tras las 40 EPOCHS

Modelolossval_lossMSEval_MSE
1)ST10.16820.14020.05550.0353
2)STMV0.15830.14280.05100.0429
3)STE0.10860.09540.02270.0199

El modelo ST1 y STMV quedan prácticamente iguales. Es decir que tras agregar las variables de fecha no pareciera haber mejoría en las métricas. Sin embargo el modelo con embeddings sí que logra una mejora algo más evidente: el validation_loss pasa de 0.14 a 0.09 y el validation_MSE de 0.04 a 0.02.

Comparemos Gráficas de Pérdida (loss)

En las tres gráficas vemos que la métrica de loss en los sets de entrenamiento y validación descienden y se mantiene estables. Bueno, en la del segundo modelo STMV la curva de validación es algo errática. Las curvas del modelo 1 y 2 se mantienen sobre el 0.15 mientras que la del 3er modelo desciende algo más en torno del 0.10

Modelo 1) ST1: En azul el Entrenamiento y naranja el set de Validación.
Modelo 2) STMV: En azul el Entrenamiento y naranja el set de Validación.
Modelo 3) STE: En azul el Entrenamiento y naranja el set de Validación.

Comparemos las Gráficas de Accuracy

Utilizamos la métrica de MSE, y vemos que nuevamente el modelo 1 y 2 se comportan similar y se sitúan sobre el 0.06 y el modelo 3 con Embeddings desciende hasta el 0.02 (indicando una mejora) .

Comparamos los pronósticos y sus aciertos

Vamos a hacer una comparación visual, de los pronósticos realizados sobre el set de validación y marcar los aciertos. En azul, los puntos reales y en naranja las predicciones.

Modelo 1) ST1: con aciertos, pero pronóstico conservador
Modelo 2) STMV: Bastante similar al modelo 1 pero con algo mayor de amplitud.
Modelo 3) STE: Los Embeddings proveen mayor flexibilidad a la curva de pronóstico y aciertos.

Podemos ver que la primera red es “más conservadora”, manteniéndoselo en “la media” de 200, sin picos bruscos. El segundo modelo tiene algo más de amplitud en sus predicciones y la red neuronal que mejor se comporta es la tercera, que evidentemente gracias a los Embeddings logra pronosticar mejor los valores y vemos picos “más alejados” de la media de 200 que son <<buenos aciertos>>.

Extra!: publica tu modelo con Flask

Ahora está disponible un nuevo artículo “Tu propio Servicio de Machine Learning” en el cual se toma el modelo de embeddings tratado aqui y se publica mediante una API creada con Flask. Te recomiendo que lo leas y así publicas tu modelo online!

Conclusiones

Como primer conclusión podemos decir que mejoran las predicciones al agregar más variables de entrada a la red. Realmente notamos mejoría con nuestro modelo 3 al usar Embeddings en la red neuronal.

NOTA 1: recordemos que hay muchos de los parámetros para “tunear” que hemos fijado arbitrariamente. Al igual que en artículo anterior, animo al lector a variar esos parámetros en los 3 modelos para mejorarlos, empezando por la cantidad de EPOCHS=40 (aumentar a 100), ó la variable de PASOS que está en 7 (probar con 4 ó con 10).

NOTA 2: en el modelo de múltiples variables “hicimos un truco” tomando como variable adicional la fecha, pero realmente estaría bien tener otras variables con datos útiles como en el ejemplo de pronóstico del clima: 3 variables con temperatura, presión y humedad.

Podemos ver cómo el Machine Learning, puede a partir de relativamente pocos datos, sacar de su galera nuevas herramientas y adaptar y mejorar el modelo. En este caso, sabemos que podemos utilizar las variables categóricas a través de Embeddings y mejorar sustancialmente los resultados obtenidos.

Te recomiendo leer “Interpretación de Modelos de Machine Learning”, pues se comentan diversas herramientas que te ayudarán a seleccionar y valorar la características más importantes que uses en tus modelos.

Suscripción al Blog – recibe nuevos artículos

Recibe antes que nadie los nuevos artículos sobre Machine Learning, redes neuronales y todo el código Python en tu casilla de correo.

NOTA: algunos usuarios reportaron que el email de confirmación a la suscripción entraron en la carpeta SPAM. Te sugiero que revises y recomiendo agregar el remitente a tus contactos. Gracias!

Recursos del Artículo y Enlaces

Otros Artículos recomendados (en inglés)

The post Pronóstico de Ventas con Redes Neuronales – Parte 2 first appeared on Aprende Machine Learning.

]]>
https://www.aprendemachinelearning.com/pronostico-de-ventas-redes-neuronales-python-embeddings/feed/ 24 6692
Pronóstico de Series Temporales con Redes Neuronales en Python https://www.aprendemachinelearning.com/pronostico-de-series-temporales-con-redes-neuronales-en-python/ https://www.aprendemachinelearning.com/pronostico-de-series-temporales-con-redes-neuronales-en-python/#comments Tue, 26 Feb 2019 10:00:00 +0000 https://www.aprendemachinelearning.com/?p=6622 En el artículo de hoy veremos qué son las series temporales y cómo predecir su comportamiento utilizando redes neuronales con Keras y Tensorflow. Repasaremos el código completo en Python y la descarga del archivo csv del ejercicio propuesto con los datos de entrada. ¿Qué es...

The post Pronóstico de Series Temporales con Redes Neuronales en Python first appeared on Aprende Machine Learning.

]]>
En el artículo de hoy veremos qué son las series temporales y cómo predecir su comportamiento utilizando redes neuronales con Keras y Tensorflow. Repasaremos el código completo en Python y la descarga del archivo csv del ejercicio propuesto con los datos de entrada.

¿Qué es una serie temporal y qué tiene de especial?

Una serie temporal es un conjunto de muestras tomadas a intervalos de tiempo regulares. Es interesante analizar su comportamiento al mediano y largo plazo, intentando detectar patrones y poder hacer pronósticos de cómo será su comportamiento futuro. Lo que hace <<especial>> a una Time Series a diferencia de un “problema” de Regresión son dos cosas:

  1. Es dependiente del Tiempo. Esto rompe con el requerimiento que tiene la regresión lineal de que sus observaciones sean independientes.
  2. Suelen tener algún tipo de estacionalidad, ó de tendencias a crecer ó decrecer. Pensemos en cuánto más producto vende una heladería en sólo 4 meses al año que en el resto de estaciones.

Ejemplo de series temporales son:

  • Capturar la temperatura, humedad y presión de una zona a intervalos de 15 minutos.
  • Valor de las acciones de una empresa en la bolsa minuto a minuto.
  • Ventas diarias (ó mensuales) de una empresa.
  • Producción en Kg de una cosecha cada semestre.

Creo que con eso ya se dan una idea 🙂 Como también pueden entrever, las series temporales pueden ser de 1 sóla variable, ó de múltiples.

Vamos a comenzar con la práctica, cargando un dataset que contiene información de casi 2 años de ventas diarias de productos. Los campos que contiene son fecha y la cantidad de unidades vendidas.

Requerimientos para el Ejercicio

Como siempre, para poder realizar las prácticas, les recomiendo tener instalado un entorno Python 3.6 como el de Anaconda que ya nos provee las Jupyter Notebooks como se explica en este artículo. También se puede ejecutar en línea de comandos sin problemas. Este ejercicio además requiere tener instalado Keras y Tensorflow (u otro similar), como se explica en el artículo antes mencionado.

Al final del texto entontrarás enlaces al GitHub con la Notebook y el enlace de descarga del archivo csv del ejemplo.

Cargar el Ejemplo con librería Pandas

Aprovecharemos las bondades de Pandas para cargar y tratar nuestros datos. Comenzamos importando las librerías que utilizaremos y leyendo el archivo csv.

import pandas as pd
import numpy as np
import matplotlib.pylab as plt
%matplotlib inline
plt.rcParams['figure.figsize'] = (16, 9)
plt.style.use('fast')

from keras.models import Sequential
from keras.layers import Dense,Activation,Flatten
from sklearn.preprocessing import MinMaxScaler

df = pd.read_csv('time_series.csv',  parse_dates=[0], header=None,index_col=0, squeeze=True,names=['fecha','unidades'])
df.head()

fecha
2017-01-02 236
2017-01-03 237
2017-01-04 290
2017-01-05 221
2017-01-07 128
Name: unidades, dtype: int64

Notemos una cosa antes de seguir: el dataframe que cargamos con pandas tiene como Indice nuestra primera columna con las fechas. Esto es para que nos permita hacer filtrados por fecha directamente y algunas operaciones especiales.

Por ejemplo, podemos ver de qué fechas tenemos datos con:

print(df.index.min())
print(df.index.max())

2017-01-02 00:00:00
2018-11-30 00:00:00

Presumiblemente tenemos las ventas diarias de 2017 y de 2018 hasta el mes de noviembre. Y ahora veamos cuantas muestras tenemos de cada año:

print(len(df['2017']))
print(len(df['2018']))

315
289

Como este comercio cierra los domingos, vemos que de 2017 no tenemos 365 días como erróneamente podíamos presuponer. Y en 2018 nos falta el último mes… que será lo que trataremos de pronosticar.

Visualización de datos

Veamos algunas gráficas sobre los datos que tenemos. Pero antes… aprovechemos los datos estadísticos que nos brinda pandas con describe()

df.describe()

count 604.000000
mean 215.935430
std 75.050304
min 51.000000
25% 171.000000
50% 214.000000
75% 261.250000
max 591.000000
Name: unidades, dtype: float64

Son un total de 604 registros, la media de venta de unidades es de 215 y un desvío de 75, es decir que por lo general estaremos entre 140 y 290 unidades.

De hecho aprovechemos el tener indice de fechas con pandas y saquemos los promedios mensuales:

meses =df.resample('M').mean()
meses

fecha
2017-01-31 203.923077
2017-02-28 184.666667
2017-03-31 182.964286
2017-04-30 198.960000
2017-05-31 201.185185
2017-06-30 209.518519
2017-07-31 278.923077
2017-08-31 316.000000
2017-09-30 222.925926
2017-10-31 207.851852
2017-11-30 185.925926
2017-12-31 213.200000
2018-01-31 201.384615
2018-02-28 190.625000
2018-03-31 174.846154
2018-04-30 186.000000
2018-05-31 190.666667
2018-06-30 196.037037
2018-07-31 289.500000
2018-08-31 309.038462
2018-09-30 230.518519
2018-10-31 209.444444
2018-11-30 184.481481
Freq: M, Name: unidades, dtype: float64

Y visualicemos esas medias mensuales:

plt.plot(meses['2017'].values)
plt.plot(meses['2018'].values)

Vemos que en 2017 (en azul) tenemos un inicio de año con un descenso en la cantidad de unidades, luego comienza a subir hasta la llegada del verano europeo en donde en los meses junio y julio tenemos la mayor cantidad de ventas. Finalmente vuelve a disminuir y tiene un pequeño pico en diciembre con la Navidad.

También vemos que 2018 (naranja) se comporta prácticamente igual. Es decir que pareciera que tenemos una estacionalidad. Por ejemplo podríamos aventurarnos a pronosticar que “el verano de 2019 también tendrá un pico de ventas”.

Veamos la gráfica de ventas diarias (en unidades) en junio y julio

verano2017 = df['2017-06-01':'2017-09-01']
plt.plot(verano2017.values)
verano2018 = df['2018-06-01':'2018-09-01']
plt.plot(verano2018.values)

¿Cómo hacer pronóstico de series temporales?

Una vez que tenemos confirmado que nuestra serie es estacionaria, podemos hacer pronóstico. Existen diversos métodos para hacer pronóstico. En nuestro caso, las ventas parecen comportarse bastante parecidas al año, con lo cual un método sencillo si por ejemplo quisiéramos proveer el stock que necesitaría este comercio, sería decir “Si en 2017 en diciembre vendimos promedio 213 unidades, pronostico que en diciembre será similar”. Otro método muy utilizado en estadística es el llamado ARIMA, el cual no explicaré aquí, pero les dejo un enlace por si están interesados. Aquí un gráfica que encontré en Twitter sobre la evolución del Forecasting:

Pues nosotros que somos unos alumnos tan avanzados y aplicados utilizaremos Machine Learning: una red neuronal para hacer el pronóstico. Curiosamente crear esta red es algo relativamente sencillo, y en poco tiempo estaremos usando un modelo de lo más moderno para hacer el pronóstico.

Pronóstico de Ventas Diarias con Redes Neuronal

Usaremos una arquitectura sencilla de red neuronal FeedForward (también llamada MLP por sus siglas Multi-Layered Perceptron), con pocas neuronas y como método de activación tangente hiperbólica pues entregaremos valores transformados entre -1 y 1.

Si aún no manejas del todo bien redes Neuronales, te recomiendo repasar rápidamente estos artículos y luego continuar con el ejercicio:

Vamos al ejemplo!

Preparamos los datos

Este puede que sea uno de los pasos más importantes de este ejercicio.

Lo que haremos es alterar nuestro flujo de entrada del archivo csv que contiene una columna con las unidades despachadas, y lo convertiremos en varias columnas. ¿Y porqué hacer esto? En realidad lo que haremos es tomar nuestra serie temporal y la convertiremos en un “problema de tipo supervisado para poder alimentar nuestra red neuronal y poder entrenarla con backpropagation (“como es habitual”). Para hacerlo, debemos tener unas entradas y unas salidas para entrenar al modelo.

Lo que haremos -en este ejemplo- es tomar los 7 días previos para “obtener” el octavo. Podríamos intentar entrenar a la red con 2, ó 3 días. O también podríamos tener 1 sola salida, ó hasta “atrevernos” intentar predecir más de un “día futuro”. Eso lo dejo a ustedes cómo actividad extra. Pero entonces quedémonos con que:

  • Entradas: serán “7 columnas” que representan las ventas en unidades de los 7 días anteriores.
  • Salida: El valor del “8vo día”. Es decir, las ventas (en unids) de ese día.

Para hacer esta transformación usaré una función llamada series_to_supervised() creada y explicada en este blog. (La verás en el código, a continuación)

Antes de usar la función, utilizamos el MinMaxScaler para transformar el rango de nuestros valores entre -1 y 1 (pues sabemos que a nuestra red neuronal, le favorece para realizar los cálculos).

Entonces aqui vemos cómo queda nuestro set de datos de entrada.

PASOS=7

# convert series to supervised learning
def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):
    n_vars = 1 if type(data) is list else data.shape[1]
    df = pd.DataFrame(data)
    cols, names = list(), list()
    # input sequence (t-n, ... t-1)
    for i in range(n_in, 0, -1):
        cols.append(df.shift(i))
        names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)]
    # forecast sequence (t, t+1, ... t+n)
    for i in range(0, n_out):
        cols.append(df.shift(-i))
        if i == 0:
            names += [('var%d(t)' % (j+1)) for j in range(n_vars)]
        else:
            names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)]
    # put it all together
    agg = pd.concat(cols, axis=1)
    agg.columns = names
    # drop rows with NaN values
    if dropnan:
        agg.dropna(inplace=True)
    return agg
 
# load dataset
values = df.values
# ensure all data is float
values = values.astype('float32')
# normalize features
scaler = MinMaxScaler(feature_range=(-1, 1))
values=values.reshape(-1, 1) # esto lo hacemos porque tenemos 1 sola dimension
scaled = scaler.fit_transform(values)
# frame as supervised learning
reframed = series_to_supervised(scaled, PASOS, 1)
reframed.head()

Usaremos como entradas las columnas encabezadas como var1(t-7) a (t-1) y nuestra salida (lo que sería el valor “Y” de la función) será el var1(t) -la última columna-.

¿Dudas sobre los conjuntos de Train, Test y Validación? Lee este artículo

Creamos la Red Neuronal Artificial

Antes de crear la red neuronal, subdividiremos nuestro conjunto de datos en train y en test. ATENCIÓN, algo importante de este procedimiento, a diferencia de en otros problemas en los que podemos “mezclar” los datos de entrada, es que en este caso nos importa mantener el orden en el que alimentaremos la red. Por lo tanto, haremos una subdivisión de los primeros 567 días consecutivos para entrenamiento de la red y los siguientes 30 para su validación. Esta es una proporción que elegí yo, y que me pareció conveniente, pero definitivamente, puede no ser la óptima (queda propuesto al lector, variar esta proporción por ejemplo a 80-20 y comparar resultados )

# split into train and test sets
values = reframed.values
n_train_days = 315+289 - (30+PASOS)
train = values[:n_train_days, :]
test = values[n_train_days:, :]
# split into input and outputs
x_train, y_train = train[:, :-1], train[:, -1]
x_val, y_val = test[:, :-1], test[:, -1]
# reshape input to be 3D [samples, timesteps, features]
x_train = x_train.reshape((x_train.shape[0], 1, x_train.shape[1]))
x_val = x_val.reshape((x_val.shape[0], 1, x_val.shape[1]))
print(x_train.shape, y_train.shape, x_val.shape, y_val.shape)

(567, 1, 7) (567,) (30, 1, 7) (30,)

Hemos transformado la entrada en un arreglo con forma (567,1,7) esto al castellano significa algo así como “567 entradas con vectores de 1×7”.

La arquitectura de la red neuronal será:

  • Entrada 7 inputs, como dijimos antes
  • 1 capa oculta con 7 neuronas (este valor lo escogí yo, pero se puede variar)
  • La salida será 1 sola neurona
  • Como función de activación utilizamos tangente hiperbólica puesto que utilizaremos valores entre -1 y 1.
  • Utilizaremos como optimizador Adam y métrica de pérdida (loss) Mean Absolute Error
  • Como la predicción será un valor continuo y no discreto, para calcular el Acuracy utilizaremos Mean Squared Error y para saber si mejora con el entrenamiento se debería ir reduciendo con las EPOCHS.
def crear_modeloFF():
    model = Sequential() 
    model.add(Dense(PASOS, input_shape=(1,PASOS),activation='tanh'))
    model.add(Flatten())
    model.add(Dense(1, activation='tanh'))
    model.compile(loss='mean_absolute_error',optimizer='Adam',metrics=["mse"])
    model.summary()
    return model

Entrenamiento y Resultados

Veamos cómo se comporta nuestra máquina al cabo de 40 épocas.

EPOCHS=40

model = crear_modeloFF()

history=model.fit(x_train,y_train,epochs=EPOCHS,validation_data=(x_val,y_val),batch_size=PASOS)

En pocos segundos vemos una reducción del valor de pérdida tanto del set de entrenamiento como del de validación.

Epoch 40/40
567/567 [==============================] – 0s 554us/step – loss: 0.1692 – mean_squared_error: 0.0551 – val_loss: 0.1383 – val_mean_squared_error: 0.03

Visualizamos al conjunto de validación (recordemos que eran 30 días)

results=model.predict(x_val)
plt.scatter(range(len(y_val)),y_val,c='g')
plt.scatter(range(len(results)),results,c='r')
plt.title('validate')
plt.show()
En la gráfica vemos que los puntitos verdes intentan aproximarse a los rojos. Cuanto más cerca ó superpuestos mejor. TIP: Si aumentamos la cantidad de EPOCHS mejora cada vez más.

Veamos y comparemos también cómo disminuye el LOSS tanto en el conjunto de train como el de Validate, esto es bueno ya que indica que el modelo está aprendiendo. A su vez pareciera no haber overfitting, pues las curvas de train y validate son distintas.

Pronóstico de ventas futuras

Ahora que tenemos nuestra red y -suponiendo que realizamos los 7 pasos del ML– la damos por buena, probaremos a realizar una nueva predicción, en este caso, usaremos los últimos días de noviembre 2018 para calcular la primer semana de diciembre. Veamos:

ultimosDias = df['2018-11-16':'2018-11-30']
ultimosDias

fecha
2018-11-16 152
2018-11-17 111
2018-11-19 207
2018-11-20 206
2018-11-21 183
2018-11-22 200
2018-11-23 187
2018-11-24 189
2018-11-25 76
2018-11-26 276
2018-11-27 220
2018-11-28 183
2018-11-29 251
2018-11-30 189
Name: unidades, dtype: int64

Y ahora seguiremos el mismo preprocesado de datos que hicimos para el entrenamiento: escalando los valores, llamando a la función series_to_supervised pero esta vez sin incluir la columna de salida “Y” pues es la que queremos hallar. Por eso, verán en el código que hacemos drop() de la última columna.

values = ultimosDias.values
values = values.astype('float32')
# normalize features
values=values.reshape(-1, 1) # esto lo hacemos porque tenemos 1 sola dimension
scaled = scaler.fit_transform(values)
reframed = series_to_supervised(scaled, PASOS, 1)
reframed.drop(reframed.columns[[7]], axis=1, inplace=True)
reframed.head(7)

De este conjunto “ultimosDias” tomamos sólo la última fila, pues es la que correspondería a la última semana de noviembre y la dejamos en el formato correcto para la red neuronal con reshape:

values = reframed.values
x_test = values[6:, :]
x_test = x_test.reshape((x_test.shape[0], 1, x_test.shape[1]))
x_test

array([[[ 0.11000001, 0.13 , -1. , 1. ,
0.44000006, 0.06999993, 0.75 ]]], dtype=float32)

Ahora crearemos una función para ir “rellenando” el desplazamiento que hacemos por cada predicción. Esto es porque queremos predecir los 7 primeros días de diciembre. Entonces para el 1 de diciembre, ya tenemos el set con los últimos 7 días de noviembre. Pero para pronosticar el 2 de diciembre necesitamos los 7 días anteriores que INCLUYEN al 1 de diciembre y ese valor, lo obtenemos en nuestra predicción anterior. Y así hasta el 7 de diciembre.

def agregarNuevoValor(x_test,nuevoValor):
    for i in range(x_test.shape[2]-1):
        x_test[0][0][i] = x_test[0][0][i+1]
    x_test[0][0][x_test.shape[2]-1]=nuevoValor
    return x_test

results=[]
for i in range(7):
    parcial=model.predict(x_test)
    results.append(parcial[0])
    print(x_test)
    x_test=agregarNuevoValor(x_test,parcial[0])

Ya casi lo tenemos… Ahora las predicciones están en el dominio del -1 al 1 y nosotros lo queremos en nuestra escala “real” de unidades vendidas. Entonces vamos a “re-transformar” los datos con el objeto “scaler” que creamos antes.

adimen = [x for x in results]    
inverted = scaler.inverse_transform(adimen)
inverted

array([[174.48904094],
[141.26934129],
[225.49292353],
[203.73262324],
[177.30941712],
[208.1552254 ],
[175.23698644]])

Ya podemos crear un nuevo DataFrame Pandas por si quisiéramos guardar un nuevo csv con el pronóstico. Y lo visualizamos.

prediccion1SemanaDiciembre = pd.DataFrame(inverted)
prediccion1SemanaDiciembre.columns = ['pronostico']
prediccion1SemanaDiciembre.plot()
prediccion1SemanaDiciembre.to_csv('pronostico.csv')
A partir de los últimos 7 días de noviembre 2018 y utilizando nuestra red neuronal, hicimos el siguiente pronóstico de venta de unidades para la primer semana de diciembre.

No te pierdas la Segunda Parte de este artículo sobre Pronóstico de Series Temporales con Redes Neuronales en Python: Multiples Variables y Embeddings

Conclusiones y propuesta al lector

Durante este nuevo capítulo del aprendizaje automático, diferenciamos lo que son las Series Temporales y su predicción de los problemas de Regresión. Aprovechamos la capacidad de las redes neuronales de generalizar y lograr predecir ventas futuras. Uno de los pasos más importantes, al realizar el pre procesado, consiste en convertir nuestra serie en un modelo de aprendizaje supervisado, donde tenemos valores de entrada y salida, para poder entrenar la red. Y finalizamos realizando pronóstico de una semana utilizando la red neuronal creada.

Propongo al lector hacer diversas pruebas para mejorar las predicciones, alterando parámetros del ejercicio:

  • Variar la cantidad de EPOCHS
  • Probar otro optimizador distinto a Adam, ó configurar valores distintos de Learning Rate.
  • Cambiar la arquitectura de la Red Neuronal:
    • Cambiar la cantidad de Neuronas de la capa oculta.
    • Agregar más capas ocultas
  • Probar utilizando más de 7 días previos para predecir. O probar con menos días.
  • Se puede probar de intentar predecir más de 1 día por vez (sin iterar el resultado como hice con la función agregarNuevoValor() )

En el próximo artículo (YA DISPONIBLE) retoma este ejercicio pero aplicando Embeddings que puede mejorar la precisión de las predicciones poniendo en juego el día de la semana y mes que estamos pronosticando, considerándolos como datos adicionales de entrada a la red neuronal para preservar mejor la estacionalidad.

NOTA 1: recordemos que el futuro es IMPREDECIBLE… por lo que debo decir al Científico de datos: cuidado sobre todo si debemos predecir resultados de series con comportamiento errático, como los valores de la bolsa! y también cautela en asuntos sensibles sobretodo relacionados con la salud.

NOTA 2: Debo confesar que inicialmente implementé el ejercicio utilizando Redes Neuronales Recurrentes, de tipo LSTM pero obtuve pésimos resultados… encontré mucho mejor performante a nuestras queridas “redes neuronales tradicionales” MLP.

Unete al Blog y Recibe el próximo artículo!

Recibe los nuevos artículos sobre Machine Learning, redes neuronales y todo el código Python en tu casilla de correo!

NOTA: muchos usuarios reportaron que el email de confirmación y/o posteriores a la suscripción entraron en su carpeta de SPAM. Te sugiero que revises y recomiendo que agregues nuestro remitente a tus contactos para evitar problemas. Gracias!

Recursos del Artículo y Enlaces

Artículos recomendados en Inglés (I’m sorry)

The post Pronóstico de Series Temporales con Redes Neuronales en Python first appeared on Aprende Machine Learning.

]]>
https://www.aprendemachinelearning.com/pronostico-de-series-temporales-con-redes-neuronales-en-python/feed/ 48 6622
Comprende Principal Component Analysis https://www.aprendemachinelearning.com/comprende-principal-component-analysis/ https://www.aprendemachinelearning.com/comprende-principal-component-analysis/#comments Mon, 08 Oct 2018 13:00:00 +0000 https://www.aprendemachinelearning.com/?p=5904 En este artículo veremos una herramienta muy importante para nuestro kit de Machine Learning y Data Science: PCA para Reducción de dimensiones. Como bonus-track veremos un ejemplo rápido-sencillo en Python usando Scikit-learn. Introducción a PCA Imaginemos que queremos predecir los precios de alquiler de vivienda...

The post Comprende Principal Component Analysis first appeared on Aprende Machine Learning.

]]>
En este artículo veremos una herramienta muy importante para nuestro kit de Machine Learning y Data Science: PCA para Reducción de dimensiones. Como bonus-track veremos un ejemplo rápido-sencillo en Python usando Scikit-learn.

Introducción a PCA

Imaginemos que queremos predecir los precios de alquiler de vivienda del mercado. Al recopilar información de diversas fuentes tendremos en cuenta variables como tipo de vivienda, tamaño de vivienda, antigüedad, servicios, habitaciones, con/sin jardín, con/sin piscina, con/sin muebles  pero también podemos tener en cuenta la distancia al centro, si hay colegio en las cercanías, o supermercados, si es un entorno ruidoso, si tiene autopistas en las cercanías, la “seguridad del barrio”, si se aceptan mascotas, tiene wifi, tiene garaje, trastero… y seguir y seguir sumando variables.

Es posible que cuanta más (y mejor) información, obtengamos una predicción más acertada. Pero también empezaremos a notar que la ejecución de nuestro algoritmo seleccionado (regresión lineal, redes neuronales, etc.) empezará a tomar más y más tiempo y recursos. Es posible que algunas de las variables sean menos importantes y no aporten demasiado valor a la predicción. También podríamos acercarnos peligrosamente a causar overfitting al modelo.

¿No sería mejor tomar menos variables, pero más valiosas?

Al quitar variables estaríamos haciendo Reducción de Dimensiones. Al hacer Reducción de Dimensiones (las características) tendremos menos relaciones entre variables a considerar. Para reducir las dimensiones podemos hacer dos cosas:

  • Eliminar por completo dimensiones
  • Extracción de Características

Eliminar por completo algunas dimensiones no estaría mal, pero deberemos tener certeza en que estamos quitando dimensiones poco importantes. Por ejemplo para nuestro ejemplo, podemos suponer que el precio de alquiler no cambiará mucho si el dueño acepta mascotas en la vivienda. Podría ser un acierto o podríamos estar perdiendo información importante.

En la Extracción de Características si tenemos 10 características crearemos otras 10 características nuevas independientes en donde cada una de esas “nuevas” características es una combinación de las 10 características “viejas”. Al crear estas nuevas variables independientes lo haremos de una manera específica y las pondremos en un orden de “mejor a peor” sean para predecir a la variable dependiente.

¿Y la reducción de dimensiónes? te preguntarás. Bueno, intentaremos mantener todas las variables posibles, pero prescindiremos de las menos importantes. Como tenemos las variables ordenadas de “mejor a peores predictoras” ya sabemos cuales serán las más y menos valiosas. A diferencia de la eliminación directa de una característica “vieja”, nuestras nuevas variables son combinaciones de todas las variables originales, aunque eliminemos algunas, estaremos manteniendo la información útil de todas las variables iniciales.

¿Qué es Principal Component Analysis?

Entonces Principal Component Analysis es una técnica de Extracción de Características donde combinamos las entradas de una manera específica y podemos eliminar algunas de las variables “menos importantes” manteniendo la parte más importante todas las variables. Como valor añadido, luego de aplicar PCA conseguiremos que todas las nuevas variables sean independientes una de otra.

¿Cómo funciona PCA?

En resumen lo que hace el algoritmo es:

  • Estandarizar los datos de entrada (ó Normalización de las Variables)
  • Obtener los autovectores y autovalores de la matriz de covarianza
  • Ordenar los autovalores de mayor a menor y elegir los “k” autovectores que se correspondan con los autovectores “k” más grandes (donde “k” es el número de dimensiones del nuevo subespacio de características).
  • Construir la matriz de proyección W con los “k” autovectores seleccionados.
  • Transformamos el dataset original “X estandarizado” vía W para obtener las nuevas características k-dimensionales.

Tranquilos, que todo esto ya lo hace solito scikit-learn (u otros paquetes Python). Ahora que tenemos las nuevas dimensiones, deberemos seleccionar con cuales nos quedamos.

Selección de los Componentes Principales

Típicamente utilizamos PCA para reducir dimensiones del espacio de características original (aunque PCA tiene más aplicaciones). Hemos rankeado las nuevas dimensiones de “mejor a peor reteniendo información”. Pero ¿cuantas elegir para obtener buenas predicciones, sin perder información valiosa? Podemos seguir 3 métodos:

Método 1: Elegimos arbitrariamente “las primeras n dimensiones” (las más importantes). Por ejemplo si lo que queremos es poder graficar en 2 dimensiones, podríamos tomar las 2 características nuevas y usarlas como los ejes X e Y.

Método 2: calcular la “proporción de variación explicada de cada característica  e ir tomando dimensiones hasta alcanzar un mínimo que nos propongamos, por ejemplo hasta alcanzar a explicar el 85% de la variabilidad total.

Método 3: Crear una gráfica especial llamada scree plot -a partir del Método 2- y seleccionar cuántas dimensiones usaremos por el método “del codo” en donde identificamos visualmente el punto en donde se produce una caída significativa en la variación explicada relativa a la característica anterior.

¿Pero… porqué funciona PCA?

Suponiendo nuestras características de entrada estandarizadas como la matriz Z  y ZT su transpuesta, cuando creamos la matriz de covarianza ZTZ es una matriz que contiene estimados de cómo cada variable de Z se relaciona con cada otra variable de Z. Comprender como una variable es asociada con otra es importante!

Los autovectores representan dirección. Los autovalores representan magnitud. A mayores autovalores, se correlacionan direcciones más importantes.

Por último asumimos que a más variabilidad en una dirección particular se correlaciona con explicar mejor el comportamiento de una variable dependiente. Mucha variabilidad usualmente  indica “Información” mientras que poca variabilidad indica “Ruido”.

Ejemplo “mínimo” en Python

Utilizaré un archivo csv de entrada de un ejercicio anterior, en el cual decidíamos si convenía alquilar o comprar casa dadas 9 dimensiones. En este ejemplo:

  • normalizamos los datos de entrada,
  • aplicamos PCA
  • y veremos que con 5 de las nuevas dimensiones (y descartando 4) obtendremos
    • hasta un 85% de variación explicada y
    • buenas predicciones.
  • Realizaremos 2 gráficas:
    • una con el acumulado de variabilidad explicada y
    • una gráfica 2D, en donde el eje X e Y serán los 2 primero componentes principales obtenidos por PCA.

Y veremos cómo los resultados “comprar ó alquilar” tienen [icon name=”angle-double-left” class=”” unprefixed_class=””]bastante buena[icon name=”angle-double-right” class=”” unprefixed_class=””] separación en 2 dimensiones.

#importamos librerías
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['figure.figsize'] = (16, 9)
plt.style.use('ggplot')
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

#cargamos los datos de entrada
dataframe = pd.read_csv(r"comprar_alquilar.csv")
print(dataframe.tail(10))

#normalizamos los datos
scaler=StandardScaler()
df = dataframe.drop(['comprar'], axis=1) # quito la variable dependiente "Y"
scaler.fit(df) # calculo la media para poder hacer la transformacion
X_scaled=scaler.transform(df)# Ahora si, escalo los datos y los normalizo

#Instanciamos objeto PCA y aplicamos
pca=PCA(n_components=9) # Otra opción es instanciar pca sólo con dimensiones nuevas hasta obtener un mínimo "explicado" ej.: pca=PCA(.85)
pca.fit(X_scaled) # obtener los componentes principales
X_pca=pca.transform(X_scaled) # convertimos nuestros datos con las nuevas dimensiones de PCA

print("shape of X_pca", X_pca.shape)
expl = pca.explained_variance_ratio_
print(expl)
print('suma:',sum(expl[0:5]))
#Vemos que con 5 componentes tenemos algo mas del 85% de varianza explicada

#graficamos el acumulado de varianza explicada en las nuevas dimensiones
plt.plot(np.cumsum(pca.explained_variance_ratio_))
plt.xlabel('number of components')
plt.ylabel('cumulative explained variance')
plt.show()

#graficamos en 2 Dimensiones, tomando los 2 primeros componentes principales
Xax=X_pca[:,0]
Yax=X_pca[:,1]
labels=dataframe['comprar'].values
cdict={0:'red',1:'green'}
labl={0:'Alquilar',1:'Comprar'}
marker={0:'*',1:'o'}
alpha={0:.3, 1:.5}
fig,ax=plt.subplots(figsize=(7,5))
fig.patch.set_facecolor('white')
for l in np.unique(labels):
    ix=np.where(labels==l)
    ax.scatter(Xax[ix],Yax[ix],c=cdict[l],label=labl[l],s=40,marker=marker[l],alpha=alpha[l])

plt.xlabel("First Principal Component",fontsize=14)
plt.ylabel("Second Principal Component",fontsize=14)
plt.legend()
plt.show()

En esta gráfica de variabilidad explicada acumulada, vemos que tomando los primeros 5 componentes llegamos al 85%

Aquí vemos que al reducir las 9 dimensiones iniciales a tan sólo 2 logramos darnos una idea de dónde visualizar nuestras predicciones para comprar o alquilar casa.

Puedes revisar más ejemplos Python en nuestra sección de Práctica

Instala el Ambiente de Programación siguiendo estos pasos

Conclusiones Finales

Con PCA obtenemos:

  1. una medida de como cada variable se asocia con las otras (matriz de covarianza)
  2. La dirección en las que nuestros datos están dispersos (autovectores)
  3. La relativa importancia de esas distintas direcciones (autovalores)

PCA combina nuestros predictores y nos permite deshacernos de los autovectores de menor importancia relativa.

Contras de PCA y variantes

No todo es perfecto en la vida ni en PCA. Como contras, debemos decir que el algoritmo de PCA es muy influenciado por los outliers en los datos. Por esta razón, surgieron variantes de PCA para minimizar esta debilidad. Entre otros se encuentran: RandomizedPCA, SparcePCA y KernelPCA.

Por último decir que PCA fue creado en 1933 y ha surgido una buena alternativa en 2008 llamada t-SNE con un enfoque distinto y del que hablaremos en un futuro artículo…

Te recomiendo leer un nuevo artículo “Interpretación de Modelos de Machine Learning” en donde se comprende mejor la importancia de las diversas features de los modelos.

Resultados de PCA en el mundo real

Para concluir, les comentaré un ejemplo muy interesante que vi para demostrar la eficacia de aplicar PCA. Si conocen el ejercicio “clásico” MNIST (algunos le llaman el Hello Word del Machine Learning), donde tenemos un conjunto de 70.000 imágenes con números “a mano” del 0 al 9 y debemos reconocerlos utilizando alguno de los algoritmos de clasificación.

Pues en el caso de MNIST, nuestras características de entrada son las imágenes de 28×28 pixeles, lo que nos da un total de 748 dimensiones de entrada. Ejecutar Regresión Logística en con una Macbook tarda unos 48 segundos en entrenar el set de datos y lograr una precisión del 91%.

Aplicando PCA al MNIST con una varianza retenida del 90% logramos reducir las dimensiones de 748 a 236. Ejecutar Regresión Logística ahora toma 10 segundos y la precisión obtenida sigue siendo del 91% !!!

Suscripción al Blog

Recibe el próximo artículo quincenal sobre Aprendizaje automático, teoría y ejemplos 

Más recursos, seguir leyendo sobre PCA

Mas información en los siguientes enlaces (en inglés):

The post Comprende Principal Component Analysis first appeared on Aprende Machine Learning.

]]>
https://www.aprendemachinelearning.com/comprende-principal-component-analysis/feed/ 11 5904
¿Comprar casa o Alquilar? Naive Bayes usando Python https://www.aprendemachinelearning.com/comprar-casa-o-alquilar-naive-bayes-usando-python/ https://www.aprendemachinelearning.com/comprar-casa-o-alquilar-naive-bayes-usando-python/#comments Thu, 23 Aug 2018 09:00:00 +0000 https://www.aprendemachinelearning.com/?p=5903 Hoy veremos un nuevo ejercicio práctico, intentando llevar los algoritmos de Machine Learning a ejemplos claros y de la vida real, repasaremos la teoría del Teorema de Bayes (video) de estadística para poder tomar una decisión muy importante: ¿me conviene comprar casa ó alquilar? Veamos...

The post ¿Comprar casa o Alquilar? Naive Bayes usando Python first appeared on Aprende Machine Learning.

]]>
Hoy veremos un nuevo ejercicio práctico, intentando llevar los algoritmos de Machine Learning a ejemplos claros y de la vida real, repasaremos la teoría del Teorema de Bayes (video) de estadística para poder tomar una decisión muy importante: ¿me conviene comprar casa ó alquilar?

Veamos si la Ciencia de Datos nos puede ayudar a resolver el misterio… ¿Si alquilo estoy tirando el dinero a la basura? ó ¿Es realmente conveniente pagar una hipoteca durante el <<resto de mi vida>>?

Si bien tocaremos el tema livianamente -sin meternos en detalles como intereses de hipotecas variable/fija, porcentajes, comisiones de bancos,etc- haremos un planteo genérico para obtener resultados y tomar la mejor decisión dada nuestra condición actual.

En artículos pasados vimos diversos algoritmos Supervisados del Aprendizaje Automático que nos dejan clasificar datos y/o obtener predicciones o asistencia a la toma de decisiones (árbol de decisión, regresión logística y lineal, red neuronal). Por lo general esos algoritmos intentan minimizar algún tipo de coste iterando las entradas y las salidas y ajustando internamente las “pendientes” ó “pesos” para hallar una salida. Esta vez, el algoritmo que usaremos se basa completamente en teoría de probabilidades  y obteniendo resultados estadísticos. ¿Será suficiente el Teorema de Bayes para obtener buenas decisiones? Veamos!

¿Qué necesitaras para programar?

Para realizar este ejercicio, crearemos una Jupyter notebook con código Python y la librería SkLearn muy utilizada en Data Science. Recomendamos utilizar la suite para Python de Anaconda. Puedes leer este artículo donde muestro paso a paso como instalar el ambiente de desarrollo. Podrás descargar los archivos de entrada csv o visualizar la notebook online (al final de este artículo los enlaces).

Nuestros Datos de Entrada:

Importemos las librerías que usaremos y visualicemos la información que tenemos de entrada:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import colors
import seaborn as sb

%matplotlib inline
plt.rcParams['figure.figsize'] = (16, 9)
plt.style.use('ggplot')

from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.naive_bayes import GaussianNB
from sklearn.feature_selection import SelectKBest

Y carguemos la info del archivo csv:

dataframe = pd.read_csv(r"comprar_alquilar.csv")
dataframe.head(10)

Las columnas que tenemos son:

  • ingresos: los ingresos de la familia mensual
  • gastos comunes: pagos de luz, agua, gas, etc mensual
  • pago coche: si se está pagando cuota por uno o más coches, y los gastos en combustible, etc al mes.
  • gastos_otros: compra en supermercado y lo necesario para vivir al mes
  • ahorros: suma de ahorros dispuestos a usar para la compra de la casa.
  • vivienda: precio de la vivienda que quiere comprar esa familia
  • estado civil:
    • 0-soltero
    • 1-casados
    • 2-divorciados
  • hijos: cantidad de hijos menores y que no trabajan.
  • trabajo:
    • 0-sin empleo 1-autónomo (freelance)
    • 2-empleado
    • 3-empresario
    • 4-pareja: autónomos
    • 5-pareja: empleados
    • 6-pareja: autónomo y asalariado
    • 7-pareja:empresario y autónomo
    • 8-pareja: empresarios los dos o empresario y empleado
  • comprar: 0-No comprar 1-Comprar (esta será nuestra columna de salida, para aprender)

Algunos supuestos para el problema formulado:

  • Está pensado en Euros pero podría ser cualquier otra moneda
  • No tiene en cuenta ubicación geográfica, cuando sabemos que dependerá mucho los precios de los inmuebles de distintas zonas
  • Se supone una hipoteca fija a 30 años con interés de mercado “bajo”.

Con esta información, queremos que el algoritmo aprenda y que como resultado podamos consultar nueva información y nos dé una decisión sobre comprar (1) o alquilar (0) casa.

El teorema de Bayes

  • El teorema de Bayes es una ecuación que describe la relación de probabilidades condicionales de cantidades estadísticas. En clasificación bayesiana estamos interesados en encontrar la probabilidad de que ocurra una “clase” dadas unas características observadas (datos). Lo podemos escribir como P( Clase | Datos). El teorema de Bayes nos dice cómo lo podemos expresar en términos de cantidades que podemos calcular directamente:
  • Clase es una salida en particular, por ejemplo “comprar”
  • Datos son nuestras características, en nuestro caso los ingresos, gastos, hijos, etc
  • P(Clase|Datos) se llama posterior (y es el resultado que queremos hallar)
  • P(Datos|Clase) se llama “verosimilitud” (en inglés likelihood)
  • P(Clase) se llama anterior (pues es una probabilidad que ya tenemos)
  • P(Datos) se llama probabilidad marginal

Si estamos tratando de elegir entre dos clases como en nuestro caso “comprar” ó “alquilar”, entonces una manera de tomar la decisión es calcular la tasa de probabilidades a posterior:

con esta maniobra, nos deshacemos del denominador de la ecuación anterior P(Datos) el llamado “probabilidad marginal”.

Clasificador Gaussian Naive Bayes

Uno de los tipos de clasificadores más populares es el llamado en inglés Gaussian Naive Bayes Classifier. NOTA:Hay otros clasificadores Bayesianos que no veremos en este artículo. Veamos cómo es su fórmula para comprender este curioso nombre: aplicaremos 2 clases (comprar, alquilar) y tres características: ingresos, ahorros e hijos.


Posterior de comprar es lo que queremos hallar: P(comprar|datos).

Explicaremos los demá:

  • P(comprar) es la probabilidad que ya tenemos. Es sencillamente el número de veces que se selecciona comprar =1 en nuestro conjunto de datos, dividido el total de observaciones. En nuestro caso (luego lo veremos en Python) son 67/202
  • p(ingresos|comprar)p(ahorros|comprar)p(hijos|comprar) es la verosimilitud. Los nombres Gaussian y Naive (ingenuo) del algoritmo vienen de dos suposiciones:
    1. asumimos que las características de la verosimilitud no estan correlacionada entre ellas. Esto seria que los ingresos sean independientes a la cantidad de hijos y de los ahorros. Como no es siempre cierto y es una suposición ingenua es que aparece en el nombre “naive bayes”
    2. Asumimos que el valor de las características (ingresos, hijos, etc) tendrá una distribución normal (gaussiana). Esto nos permite calcular cada parte p(ingresos|comprar) usando la función de probabilidad de densidad normal.
  • probabilidad marginal muchas veces es difícil de calcular, sin embargo, por la ecuación que vimos más arriba, no la necesitaremos para obtener nuestro valor a posterior. Esto simplifica los cálculos.

Bien!, Fin de teoría, sigamos con el ejercicio! Ahora toca visualizar nuestras entradas y programar un poquito.

Visualización de Datos

Veamos qué cantidad de muestras de comprar o alquilar tenemos:

print(dataframe.groupby('comprar').size())

comprar
0 135
1 67
dtype: int64

Esto son 67 que entradas en las que se recomienda comprar y 135 en las que no.

Hagamos un histograma de las características quitando la columna de resultados (comprar):

dataframe.drop(['comprar'], axis=1).hist()
plt.show()

Pareciera a grandes rasgos que la distribución de hijos e ingresos <<se parece>> un poco a una distribución normal.

Preparar los datos de entrada

Vamos a hacer algo: procesemos algunas de estas columnas. Por ejemplo, podríamos agrupar los diversos gastos. También crearemos una columna llamada financiar que será la resta del precio de la vivienda con los ahorros de la familia.

dataframe['gastos']=(dataframe['gastos_comunes']+dataframe['gastos_otros']+dataframe['pago_coche'])
dataframe['financiar']=dataframe['vivienda']-dataframe['ahorros']
dataframe.drop(['gastos_comunes','gastos_otros','pago_coche'], axis=1).head(10)

Y ahora veamos un resumen estadístico que nos brinda la librería Pandas con describe():

reduced = dataframe.drop(['gastos_comunes','gastos_otros','pago_coche'], axis=1)
reduced.describe()

Feature Selection ó Selección de Características

En este ejercicio haremos Feature Selection para mejorar nuestros resultados con este algoritmo. En vez de utilizar las 11 columnas de datos de entrada que tenemos, vamos a utilizar una Clase de SkLearn llamada SelectKBest con la que seleccionaremos las 5 mejores características y usaremos sólo esas.

X=dataframe.drop(['comprar'], axis=1)
y=dataframe['comprar']

best=SelectKBest(k=5)
X_new = best.fit_transform(X, y)
X_new.shape
selected = best.get_support(indices=True)
print(X.columns[selected])

Index([‘ingresos’, ‘ahorros’, ‘hijos’, ‘trabajo’, ‘financiar’], dtype=’object’)

Bien, entonces usaremos 5 de las 11 características que teníamos. Las que “más aportan” al momento de clasificar. Veamos qué grado de correlación tienen:

used_features =X.columns[selected]

colormap = plt.cm.viridis
plt.figure(figsize=(12,12))
plt.title('Pearson Correlation of Features', y=1.05, size=15)
sb.heatmap(dataframe[used_features].astype(float).corr(),linewidths=0.1,vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True)

Con esto comprobamos que en general están poco correlacionadas, sin embargo también tenemos 2 valores de 0,7. Esperemos que el algoritmo sea lo suficientemente “naive” para dar buenos resultados 😉

Otra alternativa para Feture Selection es utilizar Principal Component Analysis (PCA) y hacer reducción de Dimensión

Crear el modelo Gaussian Naive Bayes con SKLearn

Primero vamos a dividir nuestros datos de entrada en entrenamiento y test.

# Split dataset in training and test datasets
X_train, X_test = train_test_split(dataframe, test_size=0.2, random_state=6) 
y_train =X_train["comprar"]
y_test = X_test["comprar"]

Y creamos el modelo, lo ponemos a aprender con fit() y obtenemos predicciones sobre nuestro conjunto de test.

# Instantiate the classifier
gnb = GaussianNB()
# Train classifier
gnb.fit(
    X_train[used_features].values,
    y_train
)
y_pred = gnb.predict(X_test[used_features])

print('Precisión en el set de Entrenamiento: {:.2f}'
     .format(gnb.score(X_train[used_features], y_train)))
print('Precisión en el set de Test: {:.2f}'
     .format(gnb.score(X_test[used_features], y_test)))

Precisión en el set de Entrenamiento: 0.87
Precisión en el set de Test: 0.90

Pues hemos obtenido un bonito 90% de aciertos en el conjunto de Test con nuestro querido clasificador bayesiano. También puedes ver los resultados obtenidos aplicando PCA en este otro artículo!

Probemos el modelo: ¿Comprar o Alquilar?

Ahora, hagamos 2 predicciones para probar nuestra máquina:

  • En un caso será una familia sin hijos con 2.000€ de ingresos que quiere comprar una casa de 200.000€ y tiene sólo 5.000€ ahorrados.
  • El otro será una familia con 2 hijos con ingresos por 6.000€ al mes, 34.000 en ahorros y consultan si comprar una casa de 320.000€.

#                 ['ingresos', 'ahorros', 'hijos', 'trabajo', 'financiar']
print(gnb.predict([[2000,        5000,     0,       5,         200000],
                   [6000,        34000,    2,       5,         320000] ]))
#Resultado esperado 0-Alquilar, 1-Comprar casa

[0 1]

Los resultados son los esperados, en el primer caso, recomienda Alquilar (0) y en el segundo comprar la casa (1).

Conclusiones

A lo largo del artículo repasamos el teorema de Bayes y vimos un ejemplo para aplicarlo en una toma de decisiones. Pero no olvidemos que en el proceso también hicimos pre procesamiento de los datos, visualizaciones y Selección de Características. Durante diversas charlas que tuve con profesionales del Data Science en mi camino de aprendizaje sale un mismo mensaje que dice: “No es tan importante el algoritmo a aplicar si no la obtención y pre procesamiento de los datos que se van a utilizar”. A tenerlo en cuenta!

Naive Bayes como clasificador se utiliza mucho en NLP (Natural Language Processing) tanto en el típico ejemplo de detectar “Spam” o no como en tareas más complejas como reconocer un idioma o detectar la categoría apropiada de un artículo de texto. También puede usarse para detección de intrusiones o anomalías en redes informáticas y para diagnósticos médicos dados unos síntomas observados. Por último veamos los pros y contras de utilizar Gaussian Naive Bayes:

  • Pros: Es rápido, simple de implementar, funciona bien con conjunto de datos pequeños, va bien con muchas dimensiones (features) y llega a dar buenos resultados aún siendo “ingenuo” sin que se cumplan todas las condiciones de distribución necesarias en los datos.
  • Contras: Requiere quitar las dimensiones con correlación y para buenos resultados las entradas deberían cumplir las 2 suposiciones de distribución normal e independencia entre sí (muy difícil que sea así ó deberíamos hacer transformaciones en lo datos de entrada).

Si les gustó el artículo les pido como favor si pueden ayudarme a difundir estas páginas en vuestras redes sociales.

Además, como siempre, los invito a suscribirse al Blog ingresando una dirección de email y recibirán una notificación cada 15 días (aprox.) con un nuevo artículo sobre Aprende Machine Learning!.

Suscripción al Blog

Recibe el próximo artículo quincenal sobre Data Science y Machine Learning con Python 

Más Recursos y descarga el Código

Otros artículos de interés sobre Bayes y Python en Inglés:

The post ¿Comprar casa o Alquilar? Naive Bayes usando Python first appeared on Aprende Machine Learning.

]]>
https://www.aprendemachinelearning.com/comprar-casa-o-alquilar-naive-bayes-usando-python/feed/ 18 5903
Clasificar con K-Nearest-Neighbor ejemplo en Python https://www.aprendemachinelearning.com/clasificar-con-k-nearest-neighbor-ejemplo-en-python/ https://www.aprendemachinelearning.com/clasificar-con-k-nearest-neighbor-ejemplo-en-python/#comments Tue, 10 Jul 2018 08:00:32 +0000 https://www.aprendemachinelearning.com/?p=5843 K-Nearest-Neighbor es un algoritmo basado en instancia de tipo supervisado de Machine Learning. Puede usarse para clasificar nuevas muestras (valores discretos) o para predecir (regresión, valores continuos). Al ser un método sencillo, es ideal para introducirse en el mundo del  Aprendizaje Automático. Sirve esencialmente para clasificar...

The post Clasificar con K-Nearest-Neighbor ejemplo en Python first appeared on Aprende Machine Learning.

]]>
K-Nearest-Neighbor es un algoritmo basado en instancia de tipo supervisado de Machine Learning. Puede usarse para clasificar nuevas muestras (valores discretos) o para predecir (regresión, valores continuos). Al ser un método sencillo, es ideal para introducirse en el mundo del  Aprendizaje Automático. Sirve esencialmente para clasificar valores buscando los puntos de datos “más similares” (por cercanía) aprendidos en la etapa de entrenamiento (ver 7 pasos para crear tu ML) y haciendo conjeturas de nuevos puntos basado en esa clasificación.

A diferencia de K-means, que es un algoritmo no supervisado y donde la “K” significa la cantidad de “grupos” (clusters) que deseamos clasificar, en K-Nearest Neighbor la “K” significa la cantidad de “puntos vecinos” que tenemos en cuenta en las cercanías para clasificar los “n” grupos -que ya se conocen de antemano, pues es un algoritmo supervisado-.

¿Qué es el algoritmo k-Nearest Neighbor ?

Es un método que simplemente busca en las observaciones más cercanas a la que se está tratando de predecir y clasifica el punto de interés basado en la mayoría de datos que le rodean. Como dijimos antes, es un algoritmo:

  • Supervisado: esto -brevemente- quiere decir que tenemos etiquetado nuestro conjunto de datos de entrenamiento, con la clase o resultado esperado dada “una fila” de datos.
  • Basado en Instancia: Esto quiere decir que nuestro algoritmo no aprende explícitamente un modelo (como por ejemplo en Regresión Logística o árboles de decisión). En cambio memoriza las instancias de entrenamiento que son usadas como “base de conocimiento” para la fase de predicción.

¿Dónde se aplica k-Nearest Neighbor?

Aunque sencillo, se utiliza en la resolución de multitud de problemas, como en sistemas de recomendación, búsqueda semántica y detección de anomalías.

Pros y contras

Como pros tiene sobre todo que es sencillo de aprender e implementar. Tiene como contras que utiliza todo el dataset para entrenar “cada punto” y por eso requiere de uso de mucha memoria y recursos de procesamiento (CPU). Por estas razones kNN tiende a funcionar mejor en datasets pequeños y sin una cantidad enorme de features (las columnas).

Para reducir la cantidad de dimensiones (features) podemos aplicar PCA

¿Cómo funciona kNN?

  1. Calcular la distancia entre el item a clasificar y el resto de items del dataset de entrenamiento.
  2. Seleccionar los “k” elementos más cercanos (con menor distancia, según la función que se use)
  3. Realizar una “votación de mayoría” entre los k puntos: los de una clase/etiqueta que <<dominen>> decidirán su clasificación final.

Teniendo en cuenta el punto 3, veremos que para decidir la clase de un punto es muy importante el valor de k, pues este terminará casi por definir a qué grupo pertenecerán los puntos, sobre todo en las “fronteras” entre grupos. Por ejemplo -y a priori- yo elegiría valores impares de k para desempatar (si las features que utilizamos son pares). No será lo mismo tomar para decidir 3 valores que 13. Esto no quiere decir que necesariamente tomar más puntos implique mejorar la precisión. Lo que es seguro es que cuantos más “puntos k”, más tardará nuestro algoritmo en procesar y darnos respuesta 😉

Las formas más populares de “medir la cercanía” entre puntos son la distancia Euclidiana (la “de siempre”) o la Cosine Similarity (mide el ángulo de  los vectores, cuanto menores, serán similares). Recordemos que este algoritmo -y prácticamente todos en ML- funcionan mejor con varias características de las que tomemos datos (las columnas de nuestro dataset). Lo que entendemos como “distancia” en la vida real, quedará abstracto a muchas dimensiones que no podemos “visualizar” fácilmente (como por ejemplo en un mapa).

Hagamos un ejemplo k-Nearest Neighbor en Python

Exploremos el algoritmo con Scikit learn

Realizaremos un ejercicio usando Python y su librería scikit-learn que ya tiene implementado el algoritmo para simplificar las cosas. Veamos cómo se hace.

Requerimientos

Para realizar este ejercicio, crearemos una Jupyter notebook con código Python y la librería SkLearn muy utilizada en Data Science. Recomendamos utilizar la suite para python de Anaconda. Puedes leer este artículo donde muestro paso a paso como instalar el ambiente de desarrollo. Podrás descargar los archivos de entrada csv o visualizar la notebook online (al final de este artículo los enlaces).

El Ejercicio y el Código: App Reviews

Para nuestro ejercicio tomaremos 257 registros con Opiniones de usuarios sobre una app (Reviews). Utilizaremos 2 columnas de datos como fuente de alimento del algoritmo. Recuerden que sólo tomaré 2 features para poder graficar en 2 dimensiones, PERO para un problema “en la vida real” conviene tomar más características de lo que sea que queramos resolver. Esto es únicamente con fines de enseñanza. Las columnas que utilizaremos serán: wordcount con la cantidad de palabras utilizadas y sentimentValue con un valor entre -4 y 4 que indica si el comentario fue valorado como positivo o negativo. Nuestras etiquetas, serán las estrellas que dieron los usuarios a la app, que son valores discretos del 1 al 5. Podemos pensar que si el usuario puntúa con más estrellas, tendrá un sentimiento positivo, pero no necesariamente siempre es así.

Comencemos con el código!

Primero hacemos imports de librerías que utilizaremos para manejo de datos, gráficas y nuestro algoritmo.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import matplotlib.patches as mpatches
import seaborn as sb

%matplotlib inline
plt.rcParams['figure.figsize'] = (16, 9)
plt.style.use('ggplot')

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix

Cargamos el archivo entrada csv con pandas, usando separador de punto y coma, pues en las reviews hay textos que usan coma. Con head(10) vemos los 10 primeros registros.

dataframe = pd.read_csv(r"reviews_sentiment.csv",sep=';')
dataframe.head(10)

Aprovechamos a ver un resumen estadístico de los datos:

dataframe.describe()

Son 257 registros. Las estrellas lógicamente vemos que van del 1 al 5. La cantidad de palabras van de 1 sóla hasta 103. y las valoraciones de sentimiento están entre -2.27 y 3.26 con una media de 0,38 y a partir del desvío estándar podemos ver que la mayoría están entre 0,38-0,89 y 0,38+0,89.

Un poco de Visualización

Veamos unas gráficas simples y qué información nos aportan:

dataframe.hist()
plt.show()

Vemos que la distribución de “estrellas” no está balanceada… esto no es bueno. Convendría tener las mismas cantidades en las salidas, para no tener resultados “tendenciosos”. Para este ejercicio lo dejaremos así, pero en la vida real, debemos equilibrarlos. La gráfica de Valores de Sentimientos parece bastante una campana movida levemente hacia la derecha del cero y la cantidad de palabras se centra sobre todo de 0 a 10.

Veamos realmente cuantas Valoraciones de Estrellas tenemos:

print(dataframe.groupby('Star Rating').size())

Con eso confirmamos que hay sobre todo de 3 y 5 estrellas.

Y aqui una gráfica más bonita:

sb.factorplot('Star Rating',data=dataframe,kind="count", aspect=3)

Graficamos mejor la cantidad de palabras y confirmamos que la mayoría están entre 1 y 10 palabras.

sb.factorplot('wordcount',data=dataframe,kind="count", aspect=3)

Preparamos las entradas

Creamos nuestro X e y de entrada y los sets de entrenamiento y test.

X = dataframe[['wordcount','sentimentValue']].values
y = dataframe['Star Rating'].values

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

Usemos k-Nearest Neighbor con Scikit Learn

Definimos el valor de k en 7 (esto realmente lo sabemos más adelante, ya veréis) y creamos nuestro clasificador.

n_neighbors = 7

knn = KNeighborsClassifier(n_neighbors)
knn.fit(X_train, y_train)
print('Accuracy of K-NN classifier on training set: {:.2f}'
     .format(knn.score(X_train, y_train)))
print('Accuracy of K-NN classifier on test set: {:.2f}'
     .format(knn.score(X_test, y_test)))

Accuracy of K-NN classifier on training set: 0.90
Accuracy of K-NN classifier on test set: 0.86

Vemos que la precisión que nos da es de 90% en el set de entrenamiento y del 86% para el de test.

NOTA: como verán utilizamos la clase KNeighborsClassifier de SciKit Learn puesto que nuestras etiquetas son valores discretos (estrellas del 1 al 5). Pero deben saber que también existe la clase KneighborsRegressor para etiquetas con valores continuos.

Precisión del modelo

Confirmemos la precisión viendo la Confusión Matrix y el Reporte sobre el conjunto de test, que nos detalla los aciertos y fallos:

pred = knn.predict(X_test)
print(confusion_matrix(y_test, pred))
print(classification_report(y_test, pred))

Cómo se ve la puntuación F1 es del 87%, bastante buena. NOTA: recuerden que este es sólo un ejercicio para aprender y tenemos MUY pocos registros totales y en nuestro conjunto de test. Por ejemplo de 2 estrellas sólo tiene 1 valoración y esto es evidentemente insuficiente.

Y ahora, la gráfica que queríamos ver!

Ahora realizaremos la grafica con la clasificación obtenida, la que nos ayuda a ver fácilmente en donde caerán las predicciones. NOTA: al ser 2 features, podemos hacer la gráfica 2D y si fueran 3 podría ser en 3D. Pero para usos reales, podríamos tener  más de 3 dimensiones y no importaría  poder visualizarlo sino el resultado del algoritmo.

h = .02  # step size in the mesh

# Create color maps
cmap_light = ListedColormap(['#FFAAAA', '#ffcc99', '#ffffb3','#b3ffff','#c2f0c2'])
cmap_bold = ListedColormap(['#FF0000', '#ff9933','#FFFF00','#00ffff','#00FF00'])

# we create an instance of Neighbours Classifier and fit the data.
clf = KNeighborsClassifier(n_neighbors, weights='distance')
clf.fit(X, y)

# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)

# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold,
                edgecolor='k', s=20)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
    
patch0 = mpatches.Patch(color='#FF0000', label='1')
patch1 = mpatches.Patch(color='#ff9933', label='2')
patch2 = mpatches.Patch(color='#FFFF00', label='3')
patch3 = mpatches.Patch(color='#00ffff', label='4')
patch4 = mpatches.Patch(color='#00FF00', label='5')
plt.legend(handles=[patch0, patch1, patch2, patch3,patch4])

    
plt.title("5-Class classification (k = %i, weights = '%s')"
              % (n_neighbors, weights))

plt.show()

Vemos las 5 zonas en las que se relacionan cantidad de palabras con el valor de sentimiento de la Review que deja el usuario.

Se distinguen 5 regiones que podríamos dividir así:

Es decir que “a ojo” una review de 20 palabras y Sentimiento 1, nos daría una valoración de 4 (zona celeste).

Con estas zonas podemos intuir ciertas características de los usuarios que usan y valoran la app:

  • Los usuarios que ponen 1 estrella tienen sentimiento negativo y hasta 25 palabras.
  • Los usuarios que ponen 2 estrellas dan muchas explicaciones (hasta 100 palabras) y su sentimiento puede variar entre negativo y algo positivo.
  • Los usuarios que ponen 3 estrellas son bastante neutrales en sentimientos, puesto que están en torno al cero y hasta unas 25 palabras.
  • Los usuarios que dan 5 estrellas son bastante positivos (de 0,5 en adelante, aproximadamente) y ponen pocas palabras (hasta 10).

Elegir el mejor valor de k

(sobre todo importante para desempatar o elegir los puntos frontera!)

Antes vimos que asignamos el valor n_neighbors=7 como valor de “k” y obtuvimos buenos resultados. ¿Pero de donde salió ese valor?. Pues realmente tuve que ejecutar este código que viene a continuación, donde vemos distintos valores k y la precisión obtenida.

k_range = range(1, 20)
scores = []
for k in k_range:
    knn = KNeighborsClassifier(n_neighbors = k)
    knn.fit(X_train, y_train)
    scores.append(knn.score(X_test, y_test))
plt.figure()
plt.xlabel('k')
plt.ylabel('accuracy')
plt.scatter(k_range, scores)
plt.xticks([0,5,10,15,20])

En la gráfica vemos que con valores k=7 a k=14 es donde mayor precisión se logra.

Clasificar y/o Predecir nuevas muestras

Ya tenemos nuestro modelo y nuestro valor de k. Ahora, lo lógico será usarlo! Pues supongamos que nos llegan nuevas reviews! veamos como predecir sus estrellas de 2 maneras. La primera:

print(clf.predict([[5, 1.0]]))

[5]

Este resultado nos indica que para 5 palabras y sentimiento 1, nos valorarán la app con 5 estrellas.

Pero también podríamos obtener las probabilidades que de nos den 1, 2,3,4 o 5 estrellas con predict_proba():

print(clf.predict_proba([[20, 0.0]]))

[[0.00381998 0.02520212 0.97097789 0. 0. ]]

Aquí vemos que para las coordenadas 20, 0.0 hay 97% probabilidades que nos den 3 estrellas. Puedes comprobar en el gráfico anterior, que encajan en las zonas que delimitamos anteriormente.

Conclusiones del algoritmo kNN

En este ejercicio creamos un modelo con Python para procesar y clasificar puntos de un conjunto de entrada con el algoritmo k-Nearest Neighbor. Cómo su nombre en inglés lo dice, se evaluán los “k vecinos más cercanos” para poder clasificar nuevos puntos. Al ser un algoritmo supervisado debemos contar con suficientes muestras etiquetadas para poder entrenar el modelo con buenos resultados. Este algoritmo es bastante simple y -como vimos antes- necesitamos muchos recursos de memoria y cpu para mantener el dataset “vivo” y evaluar nuevos puntos. Esto no lo hace recomendable para conjuntos de datos muy grandes. En el ejemplo, sólo utilizamos 2 dimensiones de entrada para poder graficar y ver en dos dimensiones cómo se obtienen y delimitan los grupos. Finalmente pudimos hacer nuevas predicciones y a raíz de los resultados, comprender mejor la problemática planteada.

Suscripción al Blog

Recibe el próximo artículo quincenal sobre Machine Learning y buenas prácticas Python 

Puedes hacer más ejercicios Machine Learning en Python  en nuestra categoría d Ejercicios paso a paso por ejemplo de Regresión Logística ó  clustering K-means ó comprender y crear una Sencilla Red Neuronal.

Recursos y enlaces del ejercicio

Más artículos de Interés sobre k-Nearest Neighbor (en Inglés)

Otras Herramientas:

GuardarGuardar

GuardarGuardar


El libro del Blog

Puedes ayudar a este autor comprando el libro ó lo puedes descargar gratuitamente. Aún está en borrador, pero apreciaré mucho tu ayuda! Contiene Extras descargables como el “Lego Dataset” utilizado en el artículo de Detección de Objetos.

The post Clasificar con K-Nearest-Neighbor ejemplo en Python first appeared on Aprende Machine Learning.

]]>
https://www.aprendemachinelearning.com/clasificar-con-k-nearest-neighbor-ejemplo-en-python/feed/ 26 5843
Regresión Lineal en español con Python https://www.aprendemachinelearning.com/regresion-lineal-en-espanol-con-python/ https://www.aprendemachinelearning.com/regresion-lineal-en-espanol-con-python/#comments Sat, 12 May 2018 22:16:35 +0000 https://www.aprendemachinelearning.com/?p=5722 ¿Qué es la regresión lineal? La regresión lineal es un algoritmo de aprendizaje supervisado que se utiliza en Machine Learning y en estadística. En su versión más sencilla, lo que haremos es “dibujar una recta” que nos indicará la tendencia de un conjunto de datos...

The post Regresión Lineal en español con Python first appeared on Aprende Machine Learning.

]]>
¿Qué es la regresión lineal?

La regresión lineal es un algoritmo de aprendizaje supervisado que se utiliza en Machine Learning y en estadística. En su versión más sencilla, lo que haremos es “dibujar una recta” que nos indicará la tendencia de un conjunto de datos continuos (si fueran discretos, utilizaríamos Regresión Logística).

En estadísticas, regresión lineal es una aproximación para modelar la relación entre una variable escalar dependiente “y” y una o mas variables explicativas nombradas con “X”.

Recordemos rápidamente la fórmula de la recta:

Y = mX + b

Donde Y es el resultado, X es la variable, m la pendiente (o coeficiente) de la recta y b la constante o también conocida como el “punto de corte con el eje Y” en la gráfica (cuando X=0)

Aqui vemos un ejemplo donde vemos datos recabados sobre los precios de las pizzas en Dinamarca (los puntos en rojo) y la linea negra es la tendencia. Esa es la línea de regresión que buscamos que el algoritmo aprenda y calcule sólo.

¿Cómo funciona el algoritmo de regresión lineal en Machine Learning?

Recordemos que los algoritmos de Machine Learning Supervisados, aprenden por sí mismos y -en este caso- a obtener automáticamente esa “recta” que buscamos con la tendencia de predicción. Para hacerlo se mide el error con respecto a los puntos de entrada y el valor “Y” de salida real. El algoritmo deberá minimizar el coste de una función de error cuadrático y esos coeficientes corresponderán con la recta óptima. Hay diversos métodos para conseguir minimizar el coste. Lo más común es utilizar una versión vectorial y la llamada Ecuación Normal que nos dará un resultado directo.
NOTA: cuando hablo de “recta” es en el caso particular de regresión lineal simple. Si hubiera más variables, hay que generalizar el término.

Hagamos un Ejercicio Práctico

En este ejemplo cargaremos un archivo .csv de entrada obtenido por webscraping que contiene diversas URLs a artículos sobre Machine Learning de algunos sitios muy importantes como Techcrunch o KDnuggets y como características de entrada -las columnas- tendremos:

  • Title: Titulo del Artículo
  • url: ruta al artículo
  • Word count: la cantidad de palabras del artículo,
  • # of Links: los enlaces externos que contiene,
  • # of comments: cantidad de comentarios,
  • # Images video: suma de imágenes (o videos),
  • Elapsed days: la cantidad de días transcurridos (al momento de crear el archivo)
  • # Shares: nuestra columna de salida que será la “cantidad de veces que se compartió el artículo”.

A partir de las características de un artículo de machine learning intentaremos predecir, cuantas veces será compartido en Redes Sociales.

Haremos una primer predicción de regresión lineal simple -con una sola variable predictora-  para poder graficar en 2 dimensiones (ejes X e Y) y luego un ejemplo de regresión Lineal Múltiple, en la que utilizaremos 3  dimensiones (X,Y,Z) y predicciones.

NOTA: el archivo .csv contiene mitad de datos reales, y otra mitad los generé de manera aleatoria, por lo que las predicciones que obtendremos no serán reales. Intentaré en el futuro hacer webscrapping de los enlaces que me faltaban y reemplazar los resultados por valores reales.

Requerimientos para hacer el Ejercicio

Para realizar este ejercicio, crearemos una Jupyter notebook con código Python y la librería SkLearn muy utilizada en Data Science. Recomendamos utilizar la suite de Anaconda. Puedes leer este artículo donde muestro paso a paso como instalar el ambiente de desarrollo. Podrás descargar los archivos de entrada csv o visualizar la notebook online (al final del artículo los enlaces).

Predecir cuántas veces será compartido un artículo de Machine Learning.

Regresión lineal simple en Python (con 1 variable)

Aqui vamos con nuestra notebook!

Comencemos por importar las librerías que utilizaremos:

# Imports necesarios
import numpy as np
import pandas as pd
import seaborn as sb
import matplotlib.pyplot as plt
%matplotlib inline
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
plt.rcParams['figure.figsize'] = (16, 9)
plt.style.use('ggplot')
from sklearn import linear_model
from sklearn.metrics import mean_squared_error, r2_score

Leemos el archivo csv y lo cargamos como un dataset de Pandas. Y vemos su tamaño

#cargamos los datos de entrada
data = pd.read_csv("./articulos_ml.csv")
#veamos cuantas dimensiones y registros contiene
data.shape

Nos devuelve (161,8)

Veamos esas primeras filas:

#son 161 registros con 8 columnas. Veamos los primeros registros
data.head()

Se ven algunos campos con valores NaN (nulos) por ejemplo algunas urls o en comentarios.

Veamos algunas estadísticas básicas de nuestros datos de entrada:

# Ahora veamos algunas estadísticas de nuestros datos
data.describe()

Aqui vemos que la media de palabras en los artículos es de 1808. El artículo más corto tiene 250 palabras y el más extenso 8401. Intentaremos ver con nuestra relación lineal, si hay una correlación entre la cantidad de palabras del texto y la cantidad de Shares obtenidos.

Hacemos una visualización en general de los datos de entrada:

# Visualizamos rápidamente las caraterísticas de entrada
data.drop(['Title','url', 'Elapsed days'],1).hist()
plt.show()

En estas gráficas vemos entre qué valores se concentran la mayoría de registros.

Vamos a filtrar los datos de cantidad de palabras para quedarnos con los registros con menos de 3500 palabras y también con los que tengan Cantidad de compartidos menos a 80.000. Lo gratificaremos pintando en azul los puntos con menos de 1808 palabras (la media) y en naranja los que tengan más.

# Vamos a RECORTAR los datos en la zona donde se concentran más los puntos
# esto es en el eje X: entre 0 y 3.500
# y en el eje Y: entre 0 y 80.000
filtered_data = data[(data['Word count'] <= 3500) & (data['# Shares'] <= 80000)]

colores=['orange','blue']
tamanios=[30,60]

f1 = filtered_data['Word count'].values
f2 = filtered_data['# Shares'].values

# Vamos a pintar en colores los puntos por debajo y por encima de la media de Cantidad de Palabras
asignar=[]
for index, row in filtered_data.iterrows():
    if(row['Word count']>1808):
        asignar.append(colores[0])
    else:
        asignar.append(colores[1])
    
plt.scatter(f1, f2, c=asignar, s=tamanios[0])
plt.show()

Regresión Lineal con Python y SKLearn

Vamos a crear nuestros datos de entrada por el momento sólo Word Count y como etiquetas los # Shares. Creamos el objeto LinearRegression y lo hacemos “encajar” (entrenar) con el método fit(). Finalmente imprimimos los coeficientes y puntajes obtenidos.

# Asignamos nuestra variable de entrada X para entrenamiento y las etiquetas Y.
dataX =filtered_data[["Word count"]]
X_train = np.array(dataX)
y_train = filtered_data['# Shares'].values

# Creamos el objeto de Regresión Linear
regr = linear_model.LinearRegression()

# Entrenamos nuestro modelo
regr.fit(X_train, y_train)

# Hacemos las predicciones que en definitiva una línea (en este caso, al ser 2D)
y_pred = regr.predict(X_train)

# Veamos los coeficienetes obtenidos, En nuestro caso, serán la Tangente
print('Coefficients: \n', regr.coef_)
# Este es el valor donde corta el eje Y (en X=0)
print('Independent term: \n', regr.intercept_)
# Error Cuadrado Medio
print("Mean squared error: %.2f" % mean_squared_error(y_train, y_pred))
# Puntaje de Varianza. El mejor puntaje es un 1.0
print('Variance score: %.2f' % r2_score(y_train, y_pred))

<

p style=”padding-left: 30px;”>Coefficients: [5.69765366]
Independent term: 11200.303223074163
Mean squared error: 372888728.34
Variance score: 0.06

De la ecuación de la recta y = mX + b nuestra pendiente “m” es el coeficiente 5,69 y el término independiente “b” es 11200. Tenemos un Error Cuadrático medio enorme… por lo que en realidad este modelo no será muy bueno 😉 Pero estamos aprendiendo a usarlo, que es lo que nos importa ahora 🙂 Esto también se ve reflejado en el puntaje de Varianza que debería ser cercano a 1.0.

Visualicemos la Recta

Veamos la recta que obtuvimos:

Predicción en regresión lineal simple

Vamos a intentar probar nuestro algoritmo, suponiendo que quisiéramos predecir cuántos “compartir” obtendrá un articulo sobre ML de 2000 palabras

#Vamos a comprobar:
# Quiero predecir cuántos "Shares" voy a obtener por un artículo con 2.000 palabras,
# según nuestro modelo, hacemos:
y_Dosmil = regr.predict([[2000]])
print(int(y_Dosmil))

Nos devuelve una predicción de 22595 “Shares” para un artículo de 2000 palabras (ya quisiera yo!!!).

Regresión Lineal Múltiple en Python

(o “Regresión con Múltiples Variables”)

Vamos a extender el ejercicio utilizando más de una variable de entrada para el modelo. Esto le da mayor poder al algoritmo de Machine Learning, pues de esta manera podremos obtener predicciones más complejas.

Nuestra “ecuación de la Recta”, ahora pasa a ser:

Y = b + m1 X1 + m2 X2 + … + m(n) X(n)

y deja de ser una recta)

En nuestro caso, utilizaremos 2 “variables predictivas” para poder graficar en 3D, pero recordar que para mejores predicciones podemos utilizar más de 2 entradas y prescindir del grafico.

Nuestra primer variable seguirá siendo la cantidad de palabras y la segunda variable será la suma de 3 columnas de entrada: la cantidad de enlaces, comentarios y cantidad de imágenes. Vamos a programar!

#Vamos a intentar mejorar el Modelo, con una dimensión más: 
# Para poder graficar en 3D, haremos una variable nueva que será la suma de los enlaces, comentarios e imágenes
suma = (filtered_data["# of Links"] + filtered_data['# of comments'].fillna(0) + filtered_data['# Images video'])

dataX2 =  pd.DataFrame()
dataX2["Word count"] = filtered_data["Word count"]
dataX2["suma"] = suma
XY_train = np.array(dataX2)
z_train = filtered_data['# Shares'].values

Nota: hubiera sido mejor aplicar PCA para reducción de dimensiones, manteniendo la información más importante de todas

Ya tenemos nuestras 2 variables de entrada en XY_train y nuestra variable de salida pasa de ser “Y” a ser el eje “Z”.

Creamos un nuevo objeto de Regresión lineal con SKLearn pero esta vez tendrá las dos dimensiones que entrenar: las que contiene XY_train. Al igual que antes, imprimimos los coeficientes y puntajes obtenidos:

# Creamos un nuevo objeto de Regresión Lineal
regr2 = linear_model.LinearRegression()

# Entrenamos el modelo, esta vez, con 2 dimensiones
# obtendremos 2 coeficientes, para graficar un plano
regr2.fit(XY_train, z_train)

# Hacemos la predicción con la que tendremos puntos sobre el plano hallado
z_pred = regr2.predict(XY_train)

# Los coeficientes
print('Coefficients: \n', regr2.coef_)
# Error cuadrático medio
print("Mean squared error: %.2f" % mean_squared_error(z_train, z_pred))
# Evaluamos el puntaje de varianza (siendo 1.0 el mejor posible)
print('Variance score: %.2f' % r2_score(z_train, z_pred))

<

p style=”padding-left: 30px;”>Coefficients: [ 6.63216324 -483.40753769]
Mean squared error: 352122816.48
Variance score: 0.11

Como vemos, obtenemos 2 coeficientes (cada uno correspondiente a nuestras 2 variables predictivas), pues ahora lo que graficamos no será una linea si no, un plano en 3 Dimensiones.

El error obtenido sigue siendo grande, aunque algo mejor que el anterior y el puntaje de Varianza mejora casi el doble del anterior (aunque sigue siendo muy malo, muy lejos del 1).

Visualizar un plano en 3 Dimensiones en Python

Graficaremos nuestros puntos de las características de entrada en color azul y los puntos proyectados en el plano en rojo. Recordemos que en esta gráfica, el eje Z corresponde a la “altura” y representa la cantidad de Shares que obtendremos.

fig = plt.figure()
ax = Axes3D(fig)

# Creamos una malla, sobre la cual graficaremos el plano
xx, yy = np.meshgrid(np.linspace(0, 3500, num=10), np.linspace(0, 60, num=10))

# calculamos los valores del plano para los puntos x e y
nuevoX = (regr2.coef_[0] * xx)
nuevoY = (regr2.coef_[1] * yy) 

# calculamos los correspondientes valores para z. Debemos sumar el punto de intercepción
z = (nuevoX + nuevoY + regr2.intercept_)

# Graficamos el plano
ax.plot_surface(xx, yy, z, alpha=0.2, cmap='hot')

# Graficamos en azul los puntos en 3D
ax.scatter(XY_train[:, 0], XY_train[:, 1], z_train, c='blue',s=30)

# Graficamos en rojo, los puntos que 
ax.scatter(XY_train[:, 0], XY_train[:, 1], z_pred, c='red',s=40)

# con esto situamos la "camara" con la que visualizamos
ax.view_init(elev=30., azim=65)
        
ax.set_xlabel('Cantidad de Palabras')
ax.set_ylabel('Cantidad de Enlaces,Comentarios e Imagenes')
ax.set_zlabel('Compartido en Redes')
ax.set_title('Regresión Lineal con Múltiples Variables')

Podemos rotar el gráfico para apreciar el plano desde diversos ángulos modificando el valor del parámetro azim en view_init con números de 0 a 360.

Predicción con el modelo de Mútiples Variables

Veamos ahora, que predicción tendremos para un artículo de 2000 palabras, con 10 enlaces, 4 comentarios y 6 imágenes.

# Si quiero predecir cuántos "Shares" voy a obtener por un artículo con: 
# 2000 palabras y con enlaces: 10, comentarios: 4, imagenes: 6
# según nuestro modelo, hacemos:

z_Dosmil = regr2.predict([[2000, 10+4+6]])
print(int(z_Dosmil))

Esta predicción nos da 20518 y probablemente sea un poco mejor que nuestra predicción anterior con 1 variables.

Conclusion y Mejora de nuestro modelo

Hemos visto cómo utilizar SKLearn en Python para crear modelos de Regresión Lineal con 1 o múltiples variables. En nuestro ejercicio no tuvimos una gran confianza  en las predicciónes. Por ejemplo en nuestro primer modelo, con 2000 palabras nos predice que podemos tener 22595 pero el margen de error haciendo raíz del error cuartico medio es más menos 19310. Es decir que escribiendo un artículo de 2000 palabras lo mismo tenemos 3285 Shares que 41905. En este caso usamos este modelo para aprender a usarlo y habrá que ver en otros casos en los que sí nos brinde predicciones acertadas.

Para mejorar nuestro modelo, deberíamos utilizar más dimensiones y encontrar datos de entrada mejores. Atención: también es posible, que no exista ninguna relación nunca entre nuestras variables de entrada y el éxito en Shares del artículo… con lo cual… nunca podremos predecir con certeza esta salida. Esto fue un experimento! Espero que les haya gustado!.

Suscribirme al Blog

Recibir el próximo artículo quincenal sobre Machine Learning y prácticas en Python 

Puedes hacer otros ejercicios Machine Learning en Python  en nuestra categoría d Ejercicios paso a paso por ejemplo de Regresión Logística o de Aprendizaje no supervisado como clustering K-means o comprender y crear una Sencilla Red Neuronal.

Recursos y enlaces del ejercicio

Otros enlaces con Artículos sobre Regresión Lineal (en Inglés)

El libro del Blog

Si te gustan los contenidos del blog y quieres darme una mano, puedes comprar el libro en papel, ó en digital.

The post Regresión Lineal en español con Python first appeared on Aprende Machine Learning.

]]>
https://www.aprendemachinelearning.com/regresion-lineal-en-espanol-con-python/feed/ 32 5722
Arbol de Decisión en Python: Clasificación y predicción. https://www.aprendemachinelearning.com/arbol-de-decision-en-python-clasificacion-y-prediccion/ https://www.aprendemachinelearning.com/arbol-de-decision-en-python-clasificacion-y-prediccion/#comments Fri, 13 Apr 2018 08:17:43 +0000 https://www.aprendemachinelearning.com/?p=5633 En este artículo describiremos rápidamente en qué consisten y cómo funcionan los árboles de decisión utilizados en Aprendizaje Automático y nos centraremos en un divertido ejemplo en Python en el que analizaremos a los cantantes y bandas que lograron un puesto número uno en las...

The post Arbol de Decisión en Python: Clasificación y predicción. first appeared on Aprende Machine Learning.

]]>
En este artículo describiremos rápidamente en qué consisten y cómo funcionan los árboles de decisión utilizados en Aprendizaje Automático y nos centraremos en un divertido ejemplo en Python en el que analizaremos a los cantantes y bandas que lograron un puesto número uno en las listas de Billboard Hot 100 e intentaremos predecir quién será el próximo Ed Sheeran a fuerza de Inteligencia Artificial. Realizaremos Gráficas que nos ayudarán a visualizar los datos de entrada y un grafo para interpretar el árbol que crearemos con el paquete Scikit-Learn. Comencemos!

¿Qué es un árbol de decisión?

Los arboles de decisión son representaciones gráficas de posibles soluciones a una decisión basadas en ciertas condiciones, es uno de los algoritmos de aprendizaje supervisado más utilizados en machine learning y pueden realizar tareas de clasificación o regresión (acrónimo del inglés CART). La comprensión de su funcionamiento suele ser simple y a la vez muy potente.

Utilizamos mentalmente estructuras de árbol de decisión constantemente en nuestra vida diaria sin darnos cuenta:

¿Llueve? => lleva paraguas. ¿Soleado? => lleva gafas de sol. ¿estoy cansado? => toma café. (decisiones del tipo IF THIS THEN THAT)

Los árboles de decisión tienen un primer nodo llamado raíz (root) y luego se descomponen el resto de atributos de entrada en dos ramas (podrían ser más, pero no nos meteremos en eso ahora) planteando una condición que puede ser cierta o falsa. Se bifurca cada nodo en 2 y vuelven a subdividirse hasta llegar a las hojas que son los nodos finales y que equivalen a respuestas a la solución: Si/No, Comprar/Vender, o lo que sea que estemos clasificando.

Otro ejemplo son los populares juegos de adivinanza:

  1. ¿Animal ó vegetal? -Animal
  2. ¿Tiene cuatro patas? -Si
  3. ¿Hace guau? -Si
  4. -> Es un perro!

¿Qué necesidad hay de usar el Algoritmo de Arbol?

Supongamos que tenemos atributos como Género con valores “hombre ó mujer” y edad en rangos: “menor de 18 ó mayor de 18” para tomar una decisión. Podríamos crear un árbol en el que dividamos primero por género y luego subdividir por edad. Ó podría ser al revés: primero por edad y luego por género. El algoritmo es quien analizando los datos y las salidas -por eso es supervisado!– decidirá la mejor forma de hacer las divisiones (split) entre nodos. Tendrá en cuenta de qué manera lograr una predicción (clasificación ó regresión) con mayor probabilidad de acierto. Parece sencillo, no? Pensemos que si tenemos 10 atributos de entrada cada uno con 2 o más valores posibles, las combinaciones para decidir el mejor árbol serían cientos ó miles… Esto ya no es un trabajo para hacer artesanalmente. Y ahí es donde este algoritmo cobra importancia, pues él nos devolverá el árbol óptimo para la toma de decisión más acertada desde un punto de vista probabilístico.

¿Cómo funciona un árbol de decisión?

Para obtener el árbol óptimo y valorar cada subdivisión entre todos los árboles posibles y conseguir el nodo raiz y los subsiguientes, el algoritmo deberá medir de alguna manera las predicciones logradas y valorarlas para comparar de entre todas y obtener la mejor. Para medir y valorar, utiliza diversas funciones, siendo las más conocidas y usadas los “Indice gini” y “Ganancia de información” que utiliza la denominada “entropía“. La división de nodos continuará hasta que lleguemos a la profundidad máxima posible del árbol ó se limiten los nodos a una cantidad mínima de muestras en cada hoja. A continuación describiremos muy brevemente cada una de las estrategias nombradas:

Indice Gini:

Se utiliza para atributos con valores continuos (precio de una casa). Esta función de coste mide el “grado de impureza” de los nodos, es decir, cuán desordenados o mezclados quedan los nodos una vez divididos. Deberemos minimizar ese GINI index.

Ganancia de información:

Se utiliza para atributos categóricos (cómo en hombre/mujer). Este criterio intenta estimar la información que aporta cada atributo basado en la “teoría de la información“. Para medir la aleatoriedad de incertidumbre de un valor aleatorio de una variable “X” se define la Entropia.
Al obtener la medida de entropía de cada atributo, podemos calcular la ganancia de información del árbol. Deberemos maximizar esa ganancia.

Ejemplo de Arbol de Decisión con Python SKLearn paso a paso

Para este ejercicio me propuse crear un set de datos original e intentar que sea divertido a la vez que explique de forma clara el funcionamiento del árbol. Comencemos:

Requerimientos para hacer el Ejercicio

Para realizar este ejercicio, utilizaremos una Jupyter notebook con código python y la librería Scikit learn muy utilizada en Data Science. Recomendamos utilizar la suite de Anaconda. Si aún no la tienes, puedes leer este artículo donde muestra paso a paso como instalar el ambiente de desarrollo. Además podrás descargar los archivos de entrada csv o visualizar la notebook online (al final del artículo los enlaces).

Predicción del “Billboard 100”: ¿Qué artista llegará al número uno del ranking?

A partir de atributos de cantantes y de un histórico de canciones que alcanzaron entrar al Billboard 100 (U.S.) en 2013 y 2014 crearemos un árbol que nos permita intentar predecir si un nuevo cantante podrá llegar a número uno.

Obtención de los datos de entrada

Utilicé un código python para hacer webscraping de una web pública “Ultimate Music Database” con información histórica del Billboard que obtuve de este artículo: “Analyzing billboard 100″. Luego completé atributos utilizando la API de Deezer (duración de las canciones), la API de Gracenote (género y ritmo de las canciones). Finalmente agregué a mano varias fechas de nacimiento de artistas utilizando la Wikipedia que no había conseguido con la Ultimate Music Database. Algunos artistas quedaron sin completar su fecha de nacimiento y con valor 0. Veremos como superar este obstáculo tratando los datos.

Para empezar importemos las librerías que utilizaremos y revisemos sus atributos de entrada:

# Imports needed for the script
import numpy as np
import pandas as pd
import seaborn as sb
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['figure.figsize'] = (16, 9)
plt.style.use('ggplot')
from sklearn import tree
from sklearn.metrics import accuracy_score
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from IPython.display import Image as PImage
from subprocess import check_call
from PIL import Image, ImageDraw, ImageFont

Si te falta alguna de ellas, recuerda que puedes instalarla con el entorno Anaconda o con la herramienta Pip.

Análisis Exploratorio Inicial

Ahora veamos cuantas columnas y registros tenemos:

artists_billboard.shape

Esto nos devuelve (635,11) es decir que tenemos 11 columnas (features) y 635 filas de datos. Vamos a echar un ojo a los primeros registros para tener una mejor idea del contenido:

artists_billboard.head()

Vemos que tenemos: Titulo de la canción, artista, “mood” ó estado de ánimo de esa canción, tempo, género, Tipo de artista, fecha en que apareció en el billboard (por ejemplo 20140628 equivale al 28 de junio de 2014), la columna TOP será nuestra etiqueta, en la que aparece 1 si llegó al número uno de Billboard ó 0 si no lo alcanzó y el anio de Nacimiento del artista. Vemos que muchas de las columnas contienen información categórica. La columna durationSeg contiene la duración en segundos de la canción, siendo un valor continuo pero que nos convendrá pasar a categórico más adelante.

Vamos a realizar algunas visualizaciones para comprender mejor nuestros datos.

Primero, agrupemos registros para ver cuántos alcanzaron el número uno y cuantos no:

artists_billboard.groupby('top').size()

nos devuelve:
top
0 494
1 141

Es decir que tenemos 494 canciones que no alcanzaron la cima y a 141 que alcanzaron el número uno. Esto quiere decir que tenemos una cantidad DESBALANCEADA de etiquetas con 1 y 0. Lo tendremos en cuenta al momento de crear el árbol.

Visualizamos esta diferencia:

Nuestras etiquetas que indican 0-No llego al Top y 1-Llego al número uno Billboard están desbalanceadas. Deberemos resolver este inconveniente

Veamos cuántos registros hay de tipo de artista, “mood”, tempo y género de las canciones:

sb.factorplot('artist_type',data=artists_billboard,kind="count")

Aqui vemos que tenemos más del doble de artistas masculinos que femeninos y unos 100 registros de canciones mixtas

sb.factorplot('mood',data=artists_billboard,kind="count", aspect=3)

Vemos que de 23 tipos de Mood, destacan 7 con picos altos. Además notamos que algunos estados de ánimo son similares

sb.factorplot('tempo',data=artists_billboard,hue='top',kind="count")

En esta gráfica vemos que hay 3 tipos de Tempo: Medium, Slow y Fast. Evidentemente predominan los tiempos Medium y también es donde encontramos más canciones que hayan alcanzado el Top 1 (en azul)

sb.factorplot('genre',data=artists_billboard,kind="count", aspect=3)

Entre los géneros musicales destacan Urban y Pop, seguidos de Tradicional.

Veamos ahora que pasa al visualizar los años de nacimiento de los artistas:

sb.factorplot('anioNacimiento',data=artists_billboard,kind="count", aspect=3)

Aqui notamos algo raro: en el año “cero” tenemos cerca de 140 registros…

Como se ve en la gráfica tenemos cerca de 140 canciones de las cuales desconocemos el año de nacimiento del artista. El resto de años parecen concentrarse entre 1979 y 1994 (a ojo). Más adelante trataremos estos registros.

Balanceo de Datos: Pocos artistas llegan al número uno

Como dijimos antes, no tenemos “equilibrio” en la cantidad de etiquetas top y “no-top” de las canciones. Esto se debe a que en el transcurso de un año, apenas unas 5 o 6 canciones logran el primer puesto y se mantienen durante varias semanas en ese puesto. Cuando inicialmente extraje las canciones, utilicé 2014 y 2015 y tenía apenas a 11 canciones en el top de Billboard y 494 que no llegaron.
Para intentar equilibrar los casos positivos agregué solamente los TOP de los años 2004 al 2013. Con eso conseguí los valores que tenemos en el archivo csv: son 494 “no-top” y 141 top. A pesar de esto sigue estando desbalanceado, y podríamos seguir agregando sólo canciones TOP de años previos, pero utilizaremos un parámetro (class_weight) del algoritmo de árbol de decisión para compensar esta diferencia.

En e l artículo “Clasificación con Datos Desbalanceados” te cuento todas las estrategias para equilibrar las clases

Visualicemos los top y no top de acuerdo a sus fechas en los Charts:

f1 = artists_billboard['chart_date'].values
f2 = artists_billboard['durationSeg'].values

colores=['orange','blue'] # si no estaban declarados previamente
tamanios=[60,40] # si no estaban declarados previamente

asignar=[]
asignar2=[]
for index, row in artists_billboard.iterrows():    
    asignar.append(colores[row['top']])
    asignar2.append(tamanios[row['top']])

plt.scatter(f1, f2, c=asignar, s=tamanios)
plt.axis([20030101,20160101,0,600])
plt.show()

En nuestro conjunto de Datos, se agregaron canciones que llegaron al top (en azul) de años 2004 al 2013 para sumar a los apenas 11 que lo habían logrado en 2014-2015.

Preparamos los datos

Vamos a arreglar el problema de los años de nacimiento que están en cero. Realmente el “feature” o característica que queremos obtener es : “sabiendo el año de nacimiento del cantante, calcular qué edad tenía al momento de aparecer en el Billboard”. Por ejemplo un artista que nació en 1982 y apareció en los charts en 2012, tenía 30 años.

Primero vamos a sustituir los ceros de la columna “anioNacimiento”por el valor None -que es es nulo en Python-.

def edad_fix(anio):
    if anio==0:
        return None
    return anio

artists_billboard['anioNacimiento']=artists_billboard.apply(lambda x: edad_fix(x['anioNacimiento']), axis=1);

Luego vamos a calcular las edades en una nueva columna “edad_en_billboard” restando el año de aparición (los 4 primeros caracteres de chart_date) al año de nacimiento. En las filas que estaba el año en None, tendremos como resultado edad None.

def calcula_edad(anio,cuando):
    cad = str(cuando)
    momento = cad[:4]
    if anio==0.0:
        return None
    return int(momento) - anio

artists_billboard['edad_en_billboard']=artists_billboard.apply(lambda x: calcula_edad(x['anioNacimiento'],x['chart_date']), axis=1);

Y finalmente asignaremos edades aleatorias a los registros faltantes: para ello, obtenemos el promedio de edad de nuestro conjunto (avg) y su desvío estándar (std) -por eso necesitábamos las edades en None- y pedimos valores random a la función que van desde avg – std hasta avg + std. En nuestro caso son edades de entre 21 a 37 años.

age_avg = artists_billboard['edad_en_billboard'].mean()
age_std = artists_billboard['edad_en_billboard'].std()
age_null_count = artists_billboard['edad_en_billboard'].isnull().sum()
age_null_random_list = np.random.randint(age_avg - age_std, age_avg + age_std, size=age_null_count)

conValoresNulos = np.isnan(artists_billboard['edad_en_billboard'])

artists_billboard.loc[np.isnan(artists_billboard['edad_en_billboard']), 'edad_en_billboard'] = age_null_random_list
artists_billboard['edad_en_billboard'] = artists_billboard['edad_en_billboard'].astype(int)
print("Edad Promedio: " + str(age_avg))
print("Desvió Std Edad: " + str(age_std))
print("Intervalo para asignar edad aleatoria: " + str(int(age_avg - age_std)) + " a " + str(int(age_avg + age_std)))

Si bien lo ideal es contar con la información real, y de hecho la podemos obtener buscando en Wikipedia (o en otras webs de música), quise mostrar otra vía para poder completar datos faltantes manteniendo los promedios de edades que teníamos en nuestro conjunto de datos.

Podemos visualizar los valores que agregamos (en color verde) en el siguiente gráfico:

f1 = artists_billboard['edad_en_billboard'].values
f2 = artists_billboard.index

colores = ['orange','blue','green']

asignar=[]
for index, row in artists_billboard.iterrows():    
    if (conValoresNulos[index]):
        asignar.append(colores[2]) # verde
    else:
        asignar.append(colores[row['top']])

plt.scatter(f1, f2, c=asignar, s=30)
plt.axis([15,50,0,650])
plt.show()

Mapeo de Datos

Vamos a transformar varios de los datos de entrada en valores categóricos. Las edades, las separamos en: menor de 21 años, entre 21 y 26, etc. las duraciones de canciones también, por ej. entre 150 y 180 segundos, etc. Para los estados de ánimo (mood) agrupé los que eran similares.

El Tempo que puede ser lento, medio o rápido queda mapeado: 0-Rapido, 1-Lento, 2-Medio (por cantidad de canciones en cada tempo: el Medio es el que más tiene)

# Mood Mapping 
artists_billboard['moodEncoded'] = artists_billboard['mood'].map( {'Energizing': 6, 
                                        'Empowering': 6,
                                        'Cool': 5, 
                                        'Yearning': 4, # anhelo, deseo, ansia
                                        'Excited': 5, #emocionado
                                        'Defiant': 3, 
                                        'Sensual': 2, 
                                        'Gritty': 3, #coraje 
                                        'Sophisticated': 4,
                                        'Aggressive': 4, # provocativo
                                        'Fiery': 4, #caracter fuerte
                                        'Urgent': 3, 
                                        'Rowdy': 4, #ruidoso alboroto
                                        'Sentimental': 4,
                                        'Easygoing': 1, # sencillo
                                        'Melancholy': 4, 
                                        'Romantic': 2, 
                                        'Peaceful': 1, 
                                        'Brooding': 4, # melancolico
                                        'Upbeat': 5, #optimista alegre
                                        'Stirring': 5, #emocionante
                                        'Lively': 5, #animado
                                        'Other': 0,'':0} ).astype(int)
# Tempo Mapping 
artists_billboard['tempoEncoded'] = artists_billboard['tempo'].map( {'Fast Tempo': 0, 'Medium Tempo': 2, 'Slow Tempo': 1, '': 0} ).astype(int)
# Genre Mapping 
artists_billboard['genreEncoded'] = artists_billboard['genre'].map( {'Urban': 4, 
                                          'Pop': 3, 
                                          'Traditional': 2, 
                                          'Alternative & Punk': 1,
                                         'Electronica': 1, 
                                          'Rock': 1, 
                                          'Soundtrack': 0, 
                                          'Jazz': 0,
                                          'Other':0,'':0} 
                                       ).astype(int)
# artist_type Mapping 
artists_billboard['artist_typeEncoded'] = artists_billboard['artist_type'].map( {'Female': 2, 'Male': 3, 'Mixed': 1, '': 0} ).astype(int)


# Mapping edad en la que llegaron al billboard
artists_billboard.loc[ artists_billboard['edad_en_billboard'] <= 21, 'edadEncoded']                         = 0
artists_billboard.loc[(artists_billboard['edad_en_billboard'] > 21) & (artists_billboard['edad_en_billboard'] <= 26), 'edadEncoded'] = 1
artists_billboard.loc[(artists_billboard['edad_en_billboard'] > 26) & (artists_billboard['edad_en_billboard'] <= 30), 'edadEncoded'] = 2
artists_billboard.loc[(artists_billboard['edad_en_billboard'] > 30) & (artists_billboard['edad_en_billboard'] <= 40), 'edadEncoded'] = 3
artists_billboard.loc[ artists_billboard['edad_en_billboard'] > 40, 'edadEncoded'] = 4

# Mapping Song Duration
artists_billboard.loc[ artists_billboard['durationSeg'] <= 150, 'durationEncoded']                          = 0
artists_billboard.loc[(artists_billboard['durationSeg'] > 150) & (artists_billboard['durationSeg'] <= 180), 'durationEncoded'] = 1
artists_billboard.loc[(artists_billboard['durationSeg'] > 180) & (artists_billboard['durationSeg'] <= 210), 'durationEncoded'] = 2
artists_billboard.loc[(artists_billboard['durationSeg'] > 210) & (artists_billboard['durationSeg'] <= 240), 'durationEncoded'] = 3
artists_billboard.loc[(artists_billboard['durationSeg'] > 240) & (artists_billboard['durationSeg'] <= 270), 'durationEncoded'] = 4
artists_billboard.loc[(artists_billboard['durationSeg'] > 270) & (artists_billboard['durationSeg'] <= 300), 'durationEncoded'] = 5
artists_billboard.loc[ artists_billboard['durationSeg'] > 300, 'durationEncoded'] = 6

Finalmente obtenemos un nuevo conjunto de datos llamado artists_encoded con el que tenemos los atributos definitivos para crear nuestro árbol. Para ello, quitamos todas las columnas que no necesitamos con “drop”:

drop_elements = ['id','title','artist','mood','tempo','genre','artist_type','chart_date','anioNacimiento','durationSeg','edad_en_billboard']
artists_encoded = artists_billboard.drop(drop_elements, axis = 1)

Como quedan los top en relación a los datos mapeados

Revisemos en tablas cómo se reparten los top=1 en los diversos atributos mapeados. Sobre la columna sum, estarán los top, pues al ser valor 0 o 1, sólo se sumarán los que sí llegaron al número 1.

artists_encoded[['moodEncoded', 'top']].groupby(['moodEncoded'], as_index=False).agg(['mean', 'count', 'sum'])

La mayoría de top 1 los vemos en los estados de ánimo 5 y 6 con 46 y 43 canciones

artists_encoded[['artist_typeEncoded', 'top']].groupby(['artist_typeEncoded'], as_index=False).agg(['mean', 'count', 'sum'])

Aqui están bastante repartidos, pero hay mayoría en tipo 3: artistas masculinos

artists_encoded[['genreEncoded', 'top']].groupby(['genreEncoded'], as_index=False).agg(['mean', 'count', 'sum'])

Los géneros con mayoría son evidentemente los géneros 3 y 4 que corresponden con Urbano y Pop

artists_encoded[['tempoEncoded', 'top']].groupby(['tempoEncoded'], as_index=False).agg(['mean', 'count', 'sum'])

El tempo con más canciones exitosas en el número 1 es el 2, tempo medio

artists_encoded[['durationEncoded', 'top']].groupby(['durationEncoded'], as_index=False).agg(['mean', 'count', 'sum'])

Están bastante repartidos en relación a la duración de las canciones

artists_encoded[['edadEncoded', 'top']].groupby(['edadEncoded'], as_index=False).agg(['mean', 'count', 'sum'])

Edad con mayoría es la tipo 1 que comprende de 21 a 25 años.

Buscamos la profundidad para nuestro árbol de decisión

Ya casi tenemos nuestro árbol. Antes de crearlo, vamos a buscar cuántos niveles de profundidad le asignaremos. Para ello, aprovecharemos la función de KFold que nos ayudará a crear varios subgrupos con nuestros datos de entrada para validar y valorar los árboles con diversos niveles de profundidad. De entre ellos, escogeremos el de mejor resultado.

Creamos el árbol y lo tuneamos

Para crear el árbol utilizamos de la librería de sklearn tree.DecisionTreeClasifier pues buscamos un árbol de clasificación (no de Regresión). Lo configuramos con los parámetros:

  • criterion=entropy ó podría ser gini, pero utilizamos entradas categóricas
  • min_samples_split=20 se refiere a la cantidad mínima de muestras que debe tener un nodo para poder subdividir.
  • min_samples_leaf=5 cantidad mínima que puede tener una hoja final. Si tuviera menos, no se formaría esa hoja y “subiría” un nivel, su antecesor.
  • class_weight={1:3.5} IMPORTANTíSIMO: con esto compensamos los desbalances que hubiera. En nuestro caso, como venía diciendo anteriormente, tenemos menos etiquetas de tipo top=1 (los artistas que llegaron al número 1 del ranking). Por lo tanto, le asignamos 3.5 de peso a la etiqueta 1 para compensar. El valor sale de dividir la cantidad de top=0 (son 494) con los top=1 (son 141).

NOTA: estos valores asignados a los parámetros fueron puestos luego de prueba y error (muchas veces visualizando el árbol, en el siguiente paso y retrocediendo a este).

cv = KFold(n_splits=10) # Numero deseado de "folds" que haremos
accuracies = list()
max_attributes = len(list(artists_encoded))
depth_range = range(1, max_attributes + 1)

# Testearemos la profundidad de 1 a cantidad de atributos +1
for depth in depth_range:
    fold_accuracy = []
    tree_model = tree.DecisionTreeClassifier(criterion='entropy',
                                             min_samples_split=20,
                                             min_samples_leaf=5,
                                             max_depth = depth,
                                             class_weight={1:3.5})
    for train_fold, valid_fold in cv.split(artists_encoded):
        f_train = artists_encoded.loc[train_fold] 
        f_valid = artists_encoded.loc[valid_fold] 

        model = tree_model.fit(X = f_train.drop(['top'], axis=1), 
                               y = f_train["top"]) 
        valid_acc = model.score(X = f_valid.drop(['top'], axis=1), 
                                y = f_valid["top"]) # calculamos la precision con el segmento de validacion
        fold_accuracy.append(valid_acc)

    avg = sum(fold_accuracy)/len(fold_accuracy)
    accuracies.append(avg)
    
# Mostramos los resultados obtenidos
df = pd.DataFrame({"Max Depth": depth_range, "Average Accuracy": accuracies})
df = df[["Max Depth", "Average Accuracy"]]
print(df.to_string(index=False))

Podmeos ver que en 4 niveles de splits tenemos el score más alto, con casi 65%.

Ahora ya sólo nos queda crear y visualizar nuestro árbol de 4 niveles de profundidad.

Visualización del árbol de decisión

Asignamos los datos de entrada y los parámetros que configuramos anteriormente con 4 niveles de profundidad. Utilizaremos la función de export_graphviz para crear un archivo de extensión .dot que luego convertiremos en un gráfico png para visualizar el árbol.

# Crear arrays de entrenamiento y las etiquetas que indican si llegó a top o no 
y_train = artists_encoded['top']
x_train = artists_encoded.drop(['top'], axis=1).values 

# Crear Arbol de decision con profundidad = 4
decision_tree = tree.DecisionTreeClassifier(criterion='entropy',
                                            min_samples_split=20,
                                            min_samples_leaf=5,
                                            max_depth = 4,
                                            class_weight={1:3.5})
decision_tree.fit(x_train, y_train)

# exportar el modelo a archivo .dot
with open(r"tree1.dot", 'w') as f:
     f = tree.export_graphviz(decision_tree,
                              out_file=f,
                              max_depth = 7,
                              impurity = True,
                              feature_names = list(artists_encoded.drop(['top'], axis=1)),
                              class_names = ['No', 'N1 Billboard'],
                              rounded = True,
                              filled= True )
        
# Convertir el archivo .dot a png para poder visualizarlo
check_call(['dot','-Tpng',r'tree1.dot','-o',r'tree1.png'])
PImage("tree1.png")

Al fin nuestro preciado árbol aparece en pantalla!. Ahora tendremos que mirar y ver si lo podemos mejorar (por ejemplo tuneando los parámetros de entrada).

Conclusiones y análisis del árbol

En la gráfica vemos, un nodo raíz que hace una primer subdivisión por género y las salidas van a izquierda por True que sea menor a 2.5, es decir los géneros 0, 1 y 2 (eran los que menos top=1 tenían) y a derecha en False van los géneros 3 y 4 que eran Pop y Urban con gran cantidad de usuarios top Billboard.

En el segundo nivel vemos que la cantidad de muestras (samples) queda repartida en 232 y 403 respectivamente.

A medida que bajamos de nivel veremos que los valores de entropía se aproximan más a 1 cuando el nodo tiene más muestras top=1 (azul) y se acercan a 0 cuando hay mayoría de muestras Top=0 (naranja).

En los diversos niveles veremos divisiones por tipo de artista , edad, duración y mood. También vemos algunas hojas naranjas que finalizan antes de llegar al último nivel: esto es porque alcanzan un nivel de entropía cero, o porque quedan con una cantidad de muestras menor a nuestro mínimo permitido para hacer split (20).

Veamos cuál fue la precisión alcanzada por nuestro árbol:

acc_decision_tree = round(decision_tree.score(x_train, y_train) * 100, 2)
print(acc_decision_tree)

Nos da un valor de 64.88%. Notamos en que casi todas las hojas finales del árbol tienen samples mezclados sobre todo en los de salida para clasificar los top=1. Esto hace que se reduzca el score.

Pongamos a prueba nuestro algoritmo

Predicción de Canciones al Billboard 100

Vamos a testear nuestro árbol con 2 artistas que entraron al billboard 100 en 2017: Camila Cabello que llegó al numero 1 con la Canción Havana y Imagine Dragons con su canción Believer que alcanzó un puesto 42 pero no llegó a la cima.

#predecir artista CAMILA CABELLO featuring YOUNG THUG
# con su canción Havana llego a numero 1 Billboard US en 2017

x_test = pd.DataFrame(columns=('top','moodEncoded', 'tempoEncoded', 'genreEncoded','artist_typeEncoded','edadEncoded','durationEncoded'))
x_test.loc[0] = (1,5,2,4,1,0,3)
y_pred = decision_tree.predict(x_test.drop(['top'], axis = 1))
print("Prediccion: " + str(y_pred))
y_proba = decision_tree.predict_proba(x_test.drop(['top'], axis = 1))
print("Probabilidad de Acierto: " + str(round(y_proba[0][y_pred]* 100, 2))+"%")

Nos da que Havana llegará al top 1 con una probabilidad del 83%. Nada mal…

#predecir artista Imagine Dragons 
# con su canción Believer llego al puesto 42 Billboard US en 2017

x_test = pd.DataFrame(columns=('top','moodEncoded', 'tempoEncoded', 'genreEncoded','artist_typeEncoded','edadEncoded','durationEncoded'))
x_test.loc[0] = (0,4,2,1,3,2,3)
y_pred = decision_tree.predict(x_test.drop(['top'], axis = 1))
print("Prediccion: " + str(y_pred))
y_proba = decision_tree.predict_proba(x_test.drop(['top'], axis = 1))
print("Probabilidad de Acierto: " + str(round(y_proba[0][y_pred]* 100, 2))+"%")

Nos da que la canción de Imagine Dragons NO llegará con una certeza del 88%. Otro acierto.

Veamos los caminos tomados por cada una de las canciones:

Aqui vemos los caminos tomados por Havana en Rojo, que alcanzó el número 1 y el camino por Believer (en rosa) que no llegó.

Te atreves con un ejercicio de Aprendizaje No supervisado? Utiliza K-means con este ejemplo práctico

Conclusiones Finales

Pues hemos tenido un largo camino, para poder crear y generar nuestro árbol. Hemos revisado los datos de entrada, los hemos procesado, los pasamos a valores categóricos y generamos el árbol. Lo hemos puesto a prueba para validarlo.

Obtener un score de menos de 65% en el árbol no es un valor muy alto, pero tengamos en cuenta que nos pusimos una tarea bastante difícil de lograr: poder predecir al número 1 del Billboard y con un tamaño de muestras tan pequeño (635 registros) y desbalanceado. Ya quisieran las discográficas poder hacerlo 🙂

Espero que hayan disfrutado de este artículo y si encuentran errores, comentarios, o sugerencias para mejorarlo, siempre son bienvenidas. Además pueden escribirme si tienen problemas en intentaré responder a la brevedad.

Como siempre los invito a suscribirse al blog para seguir creciendo como comunidad de desarrolladores que estamos aprendiendo mediante ejemplos a crear algoritmos inteligentes.

Ya estás listo para el siguiente algoritmo: Random Forest!

Suscribirme al Blog

Recibir el próximo artículo quincenal sobre Machine Learning y prácticas en Python 

Y si quieres aprender otros ejercicios en Python puedes hacer nuestros Ejercicios paso a paso de Regresión LinealRegresión Logística o de Aprendizaje no supervisado clustering K-means.

Recursos y enlaces del ejercicio

Ahora que sabes árboles de decisión, ya puedes aprender Random Forest

Otros enlaces con Artículos sobre Decisión Tree (en Inglés)

GuardarGuardarGuardarGuardar


El libro del Blog (en desarrollo)

Puedes colaborar comprando el libro ó lo puedes descargar gratuitamente. Aún está en borrador, pero apreciaré mucho tu ayuda! Contiene Extras descargares como el “Lego Dataset” utilizado en el artículo de Detección de Objetos.

The post Arbol de Decisión en Python: Clasificación y predicción. first appeared on Aprende Machine Learning.

]]>
https://www.aprendemachinelearning.com/arbol-de-decision-en-python-clasificacion-y-prediccion/feed/ 74 5633
Aprendizaje Profundo: una Guía rápida https://www.aprendemachinelearning.com/aprendizaje-profundo-una-guia-rapida/ https://www.aprendemachinelearning.com/aprendizaje-profundo-una-guia-rapida/#comments Tue, 14 Nov 2017 10:00:42 +0000 https://www.aprendemachinelearning.com/?p=5338 Explicando Deep Learning y Redes Neuronales -sin código- Intentaré explicar brevemente en qué consiste el Deep Learning ó Aprendizaje Profundo utilizado en Machine Learning describiendo sus componentes básicos. Conocimientos Previos Daré por sentado que el lector ya conoce la definición de Machine Learning y sus principales...

The post Aprendizaje Profundo: una Guía rápida first appeared on Aprende Machine Learning.

]]>
Explicando Deep Learning y Redes Neuronales -sin código-

Intentaré explicar brevemente en qué consiste el Deep Learning ó Aprendizaje Profundo utilizado en Machine Learning describiendo sus componentes básicos.

Conocimientos Previos

Daré por sentado que el lector ya conoce la definición de Machine Learning y sus principales aplicaciones en el mundo real y el panorama de algoritmos utilizados con mayor frecuencia. Nos centraremos en Aprendizaje Profundo aplicando Redes Neuronales Artificiales.

Entonces, ¿cómo funciona el Deep Learning? Mejor un Ejemplo

El Aprendizaje Profundo es un método del Machine Learning que nos permite entrenar una Inteligencia Artificial para obtener una predicción dado un conjunto de entradas. Esta inteligencia logrará un nivel de cognición por jerarquías. Se puede utilizar Aprendizaje Supervisado o No Supervisado.

Explicaré como funciona el Deep Learning mediante un ejemplo hipotético de predicción sobre quién ganará el próximo mundial de futbol. Utilizaremos aprendizaje supervisado mediante algoritmos de Redes Neuronales Artificiales.

Para lograr las predicciones de los partidos de fútbol usaremos como ejemplo las siguientes entradas:

  •  Cantidad de Partidos Ganados
  •  Cantidad de Partidos Empatados
  •  Cantidad de Partidos Perdidos
  • Cantidad de Goles a Favor
  • Cantidad de Goles en Contra
  • “Racha Ganadora” del equipo (cant. max de partidos ganados seguidos sobre el total jugado)

Y podríamos tener muchísimas entradas más, por ejemplo la puntuación media de los jugadores del equipo, o el score que da la FIFA al equipo. Como en cada partido tenemos a 2 rivales, deberemos estos 6 datos de entrada por cada equipo, es decir, 6 entradas del equipo 1 y otras 6 del equipo 2 dando un total de 12 entradas.

La predicción de salida será el resultado del partido: Local, Empate o Visitante.

Creamos una Red Neuronal

En la programación “tradicional” escribiríamos código en donde indicamos reglas por ejemplo “si goles  de equipo 1 mayor a goles de equipo 2 entonces probabilidad de Local aumenta”. Es decir que deberíamos programar artesanalmente unas reglas de inteligencia bastante extensa e inter-relacionar las 12 variables. Para evitar todo ese enredo y hacer que nuestro código sea escalaba y flexible a cambios recurrimos a las Redes Neuronales de Machine Learning para indicar una arquitectura de interconexiones y dejar que este modelo aprenda por sí mismo (y descubra él mismo relaciones de variables que nosotros desconocemos).

Lee aqui, sobre la historia de las Redes Neuronales

Vamos a crear una Red Neuronal con 12 valores de entrada (Input Layer) y con 3 neuronas de Salida (Output Layer). Las neuronas que tenemos en medio se llaman Hidden Layers y podemos tener muchas, cada una con una distinta cantidad de neuronas. Todas las neuronas estarán inter-conectadas unas con otras en las distintas capas como vemos en el dibujo. Las Neuronas son los círculos blancos.

  • La capa de entrada recibe los datos de entrada y los pasa a la primer capa oculta.
  • Las capas ocultas realizarán cálculos matemáticos con nuestras entradas. Uno de los desafíos al crear la Red Neuronal es decidir el número de capas ocultas y la cantidad de neuronas de cada capa.
  • La capa de Salida devuelve la predicción realizada. En nuestro caso de 3 resultados discretos las salidas podrán ser “1 0 0” para Local, “0 1 0” para Empate y “0 0 1” para Visitante.

La cantidad total de capas en la cadena le da “profundidad” al modelo. De aquí es que surge la terminología de Aprendizaje Profundo.

¿Cómo se calcula la predicción?

Cada conexión de nuestra red neuronal está asociada a un peso. Este peso dictamina la importancia que tendrá esa relación en la neurona al multiplicarse por el valor de entrada. Los valores iniciales de peso se asignan aleatoriamente (SPOILER: más adelante los pesos se ajustarán solos).

Imitando a las neuronas biológicas. cada Neurona tiene una Función de Activación. Esta función determinará si la suma de sus valores recibidos (previamente multiplicados por el peso de la conexión) supera un umbral que hace que la neurona se active y dispare un valor hacia la siguiente capa conectada. Hay diversas Funciones de Activación conocidas que se suelen utilizar en estas redes.

Cuando todas las capas finalizan de realizar sus cómputos, se llegará a la capa final con una predicción. Por Ejemplo si nuestro modelo nos devuelve 0.6 0.25 0.15 está prediciendo que ganará Local con 60% probabilidades, será Empate 25% o que gane Visitante 15%.

Entrenando Nuestra Red Neuronal

Entrenar nuestra IA puede llegar a ser la parte más difícil del Deep Learning. Necesitamos:

  1. Gran cantidad de valores en nuestro conjunto de Datos de Entrada
  2. Gran poder de cálculo computacional

Para nuestro ejemplo de “predicción de Partidos de Futbol para el próximo Mundial” deberemos crear una base de datos con todos los resultados históricos de los Equipos de Fútbol en mundiales, en partidos amistosos, en clasificatorios, los goles, las rachas a lo largo de los años, etc.

Para entrenar nuestra máquina, deberemos alimentarla con nuestro conjunto de datos de entrada y comparar el resultado (local, empate, visitante) contra la predicción obtenida. Como nuestro modelo fue inicializado con pesos aleatorios, y aún está sin entrenar, las salidas obtenidas seguramente serán erróneas.

Una vez que tenemos nuestro conjunto de datos, comenzaremos un proceso iterativo: usaremos una función para comparar cuan bueno/malo fue nuestro resultado contra el resultado real. Esta función es llamada “Función Coste“. Idealmente queremos que nuestro coste sea cero, es decir sin error(cuando el valor de la predicción es igual al resultado real del partido). A medida que entrena el modelo irá ajustando los pesos de inter-conexiones de las neuronas de manera automática hasta obtener buenas predicciones. A ese proceso de “ir y venir” por las capas de neuronas se le conoce como Back-Propagation. Más detalle a continuación.

¿Cómo reducimos la función coste -y mejoramos las predicciones-?

Para poder ajustar los pesos de las conexiones entre neuronas haciendo que el coste se aproxime a cero usaremos una técnica llamada Gradient Descent. Esta técnica permite encontrar el mínimo de una función. En nuestro caso, buscaremos el mínimo en la Función Coste.

Funciona cambiando los pesos en pequeños incrementos luego de cada iteración del conjunto de datos. Al calcular la derivada (o gradiente) de la Función Coste en un cierto conjunto de pesos, podremos ver en que dirección “descender” hacia el mínimo global. Aquí se puede ver un ejemplo de Descenso de Gradiente en  2 dimensiones, imaginen la dificultad de tener que encontrar un mínimo global en 12 dimensiones!

Para minimizar la función de coste necesitaremos iterar por el conjunto de datos cientos de miles de veces (ó más), por eso es tan necesario tener gran capacidad de cómputo en el ordenador/nube en la que entrenamos la red.

La actualización del valor de los pesos se realizará automáticamente usando el Descenso de Gradiente. Esta es parte de la magia del Aprendizaje Profundo “Automático”.

Una vez que finalizamos de entrenar nuestro Predictor de Partidos de Futbol del Mundial, sólo tendremos que alimentarlo con los partidos que se disputarán y podremos saber quién ganará Rusia 2018… Es un caso hipotético, pero es un ejercicio divertido para hacer.

¿Dónde puedo aprender más?

Hay muchos tipos de Redes Neuronales,  Convolutional Neural Networks (CNN) usadas para Vision por Computadora o las Recurrent Neural Networks RNN para Procesamiento Natural del Lenguaje. Puedes leer mi artículo con una sencilla implementación en Python con Keras, un artículo con un ejercicio en Python pero sin librerias. O un artículo sobre la historia de las Redes Neuronales. Si quieres aprender el aspecto técnico del Aprendizaje Profundo puedo sugerir tomar un curso online. Actualmente el más popular es el de Andrew Ng: Deep Learning Specialization. Se puede cursar gratuitamente o pagar para obtener la certificación. O para un conocimiento general de Machine Learning también puedo recomendar el curso estrella de Coursera. Un gran problema que surge al crear y entrenar Redes Neuronales es el Overfitting al dar demasiada complejidad a nuestra arquitectura de capas.

Si tienes dudas o preguntas sobre este tema puedo ayudarte, deja tus comentarios al finalizar este artículo.

Quieres preparar tu ambiente de desarrollo en Python?
Sigue este tutorial! Y crea tu primer red neuronal aquí

En Conclusión

  • El Aprendizaje Profundo utiliza Algoritmos de Redes Neuronales Artificiales que imitan el comportamiento biológico del cerebro.
  • Hay 3 tipos de Capas de Neuronas: de Entrada, Ocultas y de Salida.
  • Las conexiones entre neuronas llevan asociadas un peso, que denota la importancia del valor de entrada en esa relación.
  • Las neuronas aplican una Función de Activación para Estandarizar su valor de salida a la próxima capa de neuronas.
  • Para entrenar una red neuronal necesitaremos un gran conjunto de datos.
  • Iterar el conjunto de datos y comparar sus salidas producirá una Función Coste que indicará cuán alejado está nuestra predicción del valor real.
  • Luego de cada iteración del conjunto de datos de entrada, se ajustarán los pesos de las neuronas utilizando el Descenso de Gradiente para reducir el valor de Coste y acercar las predicciones a las salidas reales.

Si te gusta este artículo puedes ayudarme difundiendo en Redes Sociales el enlace para que más personas lo encuentren.

Y si vas a crear tu propia máquina, recuerda seguir los 7 pasos que comento en este artículo.

Para más actualizaciones te sugiero que te suscribas al blog o que me sigas en Twitter!

Nuevo! Ejercicio con Redes Neuronales: Pronóstico de Ventas

Entérate Primero – Suscripción

Anótate al blog y te notificará al publicarse el próximo post quincenal sobre Machine Learning. Súbete a la ola de Tecnología Disruptiva! 

GuardarGuardar

The post Aprendizaje Profundo: una Guía rápida first appeared on Aprende Machine Learning.

]]>
https://www.aprendemachinelearning.com/aprendizaje-profundo-una-guia-rapida/feed/ 11 5338