Arbol de Decisión en Python: Clasificación y predicción.

En este artículo describiremos rápidamente en qué consisten y cómo funcionan los árboles de decisión utilizados en Aprendizaje Automático y nos centraremos en un divertido ejemplo en Python en el que analizaremos a los cantantes y bandas que lograron un puesto número uno en las listas de Billboard Hot 100 e intentaremos predecir quién será el próximo Ed Sheeran a fuerza de Inteligencia Artificial. Realizaremos Gráficas que nos ayudarán a visualizar los datos de entrada y un grafo para interpretar el árbol que crearemos con el paquete Scikit-Learn. Comencemos!

¿Qué es un árbol de decisión?

Los arboles de decisión son representaciones gráficas de posibles soluciones a una decisión basadas en ciertas condiciones, es uno de los algoritmos de aprendizaje supervisado más utilizados en machine learning y pueden realizar tareas de clasificación o regresión (acrónimo del inglés CART). La comprensión de su funcionamiento suele ser simple y a la vez muy potente.

Utilizamos mentalmente estructuras de árbol de decisión constantemente en nuestra vida diaria sin darnos cuenta:

Read More

K-Means en Python paso a paso

K-Means es un algoritmo no supervisado de Clustering. Se utiliza cuando tenemos un montón de datos sin etiquetar. El objetivo de este algoritmo es el de encontrar “K” grupos (clusters) entre los datos crudos. En este artículo repasaremos sus conceptos básicos y veremos un ejemplo paso a paso en python que podemos descargar.

Cómo funciona K-Means

El algoritmo trabaja iterativamente para asignar a cada “punto” (las filas de nuestro conjunto de entrada forman una coordenada) uno de los “K” grupos basado en sus características. Son agrupados en base a la similitud de sus features (las columnas). Como resultado de ejecutar el algoritmo tendremos:

Read More

Qué es overfitting y underfitting y cómo solucionarlo

Las principales causas al obtener malos resultados en Machine Learning son el overfitting o el underfitting de los datos. Cuando entrenamos nuestro modelo intentamos “hacer encajar” -fit en inglés- los datos de entrada entre ellos y con la salida. Tal vez se pueda traducir overfitting como “sobreajuste” y underfitting  como “subajuste” y hacen referencia al fallo de nuestro modelo al generalizar -encajar- el conocimiento que pretendemos que adquieran. Lo explicaré a continuación con un ejemplo.

Generalización del Conocimiento

Como si se tratase de un ser humano, las máquinas de aprendizaje deberán ser capaces de generalizar conceptos. Supongamos que vemos un perro Labrador por primera vez en la vida y nos dicen “eso es un perro”. Luego nos enseñan un Caniche y nos preguntan: ¿eso es un perro? Diremos “No”, pues no se parece en nada a lo que aprendimos anteriormente. Ahora imaginemos que nuestro tutor nos muestra un libro con fotos de 10 razas de perros distintas. Cuando veamos una raza de perro que desconocíamos seguramente seremos capaces de reconocer al cuadrúpedo canino al tiempo de poder discernir en que un gato no es un perro, aunque sea peludo y tenga 4 patas.

Read More

Regresión Logística con Python paso a paso

Breve Introducción a la Regresión Logística

Utilizaremos algoritmos de Machine Learning en Python para resolver un problema de Regresión Logística. A partir de un conjunto de datos de entrada (características), nuestra salida será discreta (y no continua) por eso utilizamos Regresión Logística (y no Regresión Lineal). La Regresión Logística es un Algoritmo Supervisado y se utiliza para clasificación.

Vamos a clasificar problemas con dos posibles estados “SI/NO”: binario o un número finito de “etiquetas” o “clases”: múltiple. Algunos Ejemplos de Regresión Logística son:

Read More