Seguimiento de Objetos con Yolo v8 y BYTETrack – Object Tracking

En artículos anteriores, hablamos sobre la clasificación de imágenes y sobre cómo hacer detección de objetos en tiempo real gracias a Yolo. Esta vez hablaremos sobre “Seguimiento de objetos” (Object Tracking en inglés) en donde sumamos una nueva “capa” de inteligencia dentro del campo de Visión Artificial.

La Problemática del rastreo de objetos

Imaginemos que tenemos un cámara de seguridad en donde aplicamos un modelo de Machine Learning como Yolo que detecta coches en tiempo real. Agregamos un “rectángulo rojo” (ó caja) sobre cada automóvil que se mueve. Bien. Queremos contabilizar cuántos de esos vehículos aparecen en pantalla durante una hora; ¿cómo hacemos?. Hasta ahora, sabemos los coches que hay en cada frame del video. En el primer fotograma hemos detectado 3 coches. En el segundo cuadro tenemos 3 coches. ¿Son los mismos ó son coches distintos? ¿Qué ocurre cuando en el siguiente fotograma aparece un cuarto coche? ¿Cuántos coches sumamos? 3 + 3 + 4 ? Tendremos un mal recuento en el transcurso de una hora, si no aplicamos un algoritmo adecuado para el rastreo de vehículos.

Espero que con ese ejemplo empieces a comprender la problemática que se nos plantea al querer hacer object tracking. Pero no es sólo eso, además de poder identificar cada objeto en un cuadro y mantener su identidad a lo largo del tiempo, aparecen otros problemas “clásicos”: la oclusión del objeto la superposición y la transformación.

  • Oclusión: cuando un objeto que estamos rastreando queda oculto momentáneamente o parcialmente por quedar detrás de una columna, farola ú otro objeto.
  • Superposición de objetos: ocurre cuando tenemos a dos jugadores de fútbol con camiseta blanca y uno pasa por detrás de otro, entonces el algoritmo podría ser incapaz de entender cuál es cada uno.
  • Transformación del objeto: tenemos identificada a una persona que camina de frente con una camiseta roja y luego cambia de rumbo y su camiseta por detrás es azul. Es la misma persona pero que en el transcurso de su recorrido va cambiando sus “features”.
  • Efectos visuales: ocurre cuando al cristal de un coche le da el sol y genera un destello, lo cual dificulta su identificación. O podría ser que pase de una zona soleada a una con sombra generando una variación en sus colores.

Algoritmos de Seguimiento:

Para poder realizar el object tracking y resolver los problemas antes mencionados se desarrollaron diversos algoritmos, siendo los más conocidos sort, deepsort, bytetrack y actualmente siguen apareciendo nuevos.

Lo básico que queremos de un algoritmo de detección es que primero identifique al objeto y que pasado el tiempo mantenga su “etiqueta”. Pero… que lo haga muy rápido, porque si estamos analizando un video en vivo no podemos congelar la imagen durante más de un segundo, ó resultará en una experiencia poco agradable.

Listemos los algoritmo de Tracking y algunas de sus características, más adelante comentaremos con un poco más de detalle el algoritmo de Byte Track, que es el que utilizaremos en el ejercicio.

  • Sort (Simple Online Realtime Tracking): utiliza la posición y el tamaño de la caja que contiene al objeto. Se predice la posición/trayectoria por su velocidad constante.
  • DeepSort: Mejora a Sort al agregar información sobre la apariencia del objeto mediante un vector creado a partir de las capas ocultas de una red neuronal profunda que debe ser entrenada.
  • StrongSort: Modifica las funciones de costo y métricas de DeepSort para mejorar sus resultados.
  • FairMOT: integra la identificación del objeto dentro de la propia red de detección encoder-decoder.
  • ByteTrack: utiliza las cajas de detección de alta y baja confianza para mantener trayectorias que puedan estar poco visibles durante el video.

En un principio de los tiempos, se intentaba poder identificar a una clase de objeto y mantener su localización. Actualmente y gracias al mayor poder de cómputo, el tipo de tarea/problema se conoce como “Multiple object tracking with Re-Identification“; en donde podemos detectar diversas clases y mantener su identificación con el paso del tiempo.

Casos de Uso

Estos son algunas de las aplicaciones que puedes realizar con Object Tracking

Seguimiento de personas / objeto de interés

Fuente de la imágen: artículo

Contabilizar vehículos (u objetos)

Entrada en una zona determinada

Trazado de rutas

¿Cómo funciona ByteTrack para seguimiento de Objetos?

ByteTrack utiliza IoU en su algoritmo. La mayoría de métodos obtienen las identidades asociando cajas de detección si los scores son mayores a un umbral (por ej. mayor a 80%). Los objetos con menor score de detección -por ej. objetos que estén parcialmente ocultos tras “una farola”- son eliminados causando trayectorias de identificación erróneas. Para resolver este problema, ByteTrack utiliza los scores de confianza altos y bajos.

IoU: nos da un porcentaje de acierto del área de predicción frente a la bounding-box real que queríamos detectar.

Comprendamos el algoritmo paso a paso:

Inicialización: Tenemos las entradas como una secuencia de Video “V”, el detector de objetos (Yolo) “Det”; el límite de confianza de score “L”. La salida será “T” siendo las rutas que sigue en el video. Comenzamos con T vacíos.

Para cada cuadro de video, predecimos las cajas de detección y scores usando Yolo. Separamos todas las cajas en dos partes: “D_high” y “D_low” según su puntaje alto o bajo del umbral “L”.

Luego de separar las cajas con los puntajes Altos y Bajos, usamos el Kalman Filter para predecir las nuevas ubicaciones en el frame actual de cada Trayectoria T.

La primer asociación se realiza entre las cajas de Score alto D_high y todos los tracks T (incluyendo los tracks perdidos “T_lost”).

Mantenemos las detecciones que quedaron sin asociarse en “D_remain” y los trayectos sin pareja en “T_remain”.

La segunda asociación intentará emparejar las cajas de bajo puntaje D_low y las restantes rutas “T_remain” de la primer asociación.

Seguiremos manteniendo las trayectorias huérfanas en “T_re-remain” y borrar todas las cajas sin emparejar de bajo puntaje.

Para los tracks sin pareja de esta segunda iteración, las pondremos en T_lost. Para cada track en T_lost si se mantiene sin relación por “30 frames”, lo eliminamos de “T”.

Finalmente inicializamos nuevos trayectos desde las cajas de alto score sin emparejar que teníamos en D_remain de la primer asociación.

NOTA: para realizar las asociaciones podemos usar métodos de “location” o “feature”. La principal innovación del algoritmo de ByteTrack es el uso de los scores de alta y baja confianza de las cajas detectadas.

Puedes revisar la implementación oficial en Python de ByteTrack en este enlace.

Comentario sobre Kalman Filter

No sólo la apariencia del objeto (features) es importante si no también la información sobre su movimiento y trayectoria. El Kalman filter predice donde estará un objeto que estaba en el frame t-1 en el próximo frame t. La distancia entre la predicción y la posición real detectada será el costo de la función. El Kalman filter es un filtro Lineal y asume el mismo ruido para todos los objetos.

¿Estado del arte?

En la siguiente gráfica vemos que ByteTrack tiene un buen equilibrio entre velocidad de detección y predicción de trayectorias, siendo el mejor de su momento (oct-2021), hasta principios de 2022. En 2022 fue superado por BoT-SORT y a finales de ese mismo año por SMILETrack.

Ejercicio: seguimiento de Skaters

Vamos a crear un script de 100 líneas en donde utilizaremos un modelo Yolo v8 preentrenado para la detección de 80 clases de objetos diferentes, incluyendo personas y skates. Iteraremos por los frames de un video en donde realizaremos la detección y alimentaremos con sus features al algoritmo de rastreo ByteTrack que se encargará de identificar al objeto.

Si tenemos éxito, veremos cómo el “objeto” se mantiene con el mismo identificador durante el video.

Si el algoritmo falla en su detección, asignará un nuevo ID, pues creerá que se trata de un objeto nuevo.

Crear el Environment

Puedes clonar el repositorio GitHub del ejercicio antes de empezar, para contar con los archivos necesarios.

Crea un nuevo ambiente Python utilizando Anaconda ejecutando:

Activa el ambiente

Instala ahora los paquetes con las versiones necesarias mediante pip

Las 80 clases que podemos detectar con el modelo standard de YOLO.

Código python

Primero importamos los paquetes que utilizaremos

Inicialización de variables, aqui elegimos el video mp4 al que le aplicaremos la detección, en mi ejemplo el archivo se llama skateboard_01.mp4.

Cargamos el modelo preentrenado “nano” de Yolo (el más pequeño), la primera vez, el modelo se descargará.

Instanciamos el algoritmo de Detección:

Creamos un “loader” de las imágenes del video que vamos a procesar e inicializamos el Archivo de video mp4 de Salida:

Entramos al Loop principal; aqui, realizaremos la detección de los objetos y luego aplicaremos el algoritmo de seguimiento para “re-identificar” objetos. Luego “imprimimos” en pantalla (frame) una caja y su ID.

En menos de 100 líneas de código podemos procesar videos y detectar objetos mediante Yolov8 y ByteTrack.

Video de salida ejemplo

Curso de Python Recomendado

Curso Online de Programador Python (Tokio School)

Precio a consultar
📅 A tu ritmo ⏱️ 400 horas 🎓 Título Propio
💻 Online
📍️ Online
🔥 Acreditado por la UCAM 🔥 Premios Excelencia Educativa
Curso Online de Programador Python (Tokio School)

Conclusión

En este artículo aprendimos los problemas y puntos clave a resolver para llevar a cabo el seguimiento de objetos en el campo de la Visión Artificial. Cada año aparecen nuevos algoritmos que complementan la detección de múltiples objetos (siendo la mejor en mi opinión Yolo) permitiendo el rastreo en tiempo real y preciso de objetos. Gracias a ello, podemos realizar trazado de rutas ó comprender cuando un objeto entra en una zona determinada para “disparar las alarmas/acciones” necesarias…

Recuerda que tienes el ejercicio completo en mi repositorio de Github. Tienes la opción de ejecutar en una Jupyter Notebook o mediante un script de Python al que puedes pasar como parámetro el video mp4 que quieras probar.

Nos vemos en la próxima!

Recursos / Enlaces

Otros artículos de interés (en inglés)

Libros Relacionados

3 comments

  1. Jorge Marcelo de la Fuente · September 8

    Gracias por Compartir, Una consulta, si se quiere entrenar otro objeto? me resulto interesante para un proyecto de contar unos envases

  2. Ing. Gabriel Hernández · October 20

    Hola, Excelentes aportes. Estoy interesado en este algoritmo. Se Python, algun libro o manual que me recomiendes para aprederlo desde cero. Explicado con peras y manzanas. De antemano mil gracias.

Leave a Reply