Random Forest, el poder del Ensamble

Si ya leíste el algoritmo de árbol de Decisión con Aprendizaje Automático, tu próximo paso es el de estudiar Random Forest. Comprende qué és y cómo funciona con un ejemplo práctico en Python. Podrás descargar el código de ejemplo en una Jupyter Notebook -como siempre-.

Random Forest es un tipo de Ensamble en Machine Learning en donde combinaremos diversos árboles -ya veremos cómo y con qué características- y la salida de cada uno se contará como «un voto» y la opción más votada será la respuesta del <<Bosque Aleatorio>>.

Random Forest, al igual que el árbol e decisión, es un modelo de aprendizaje supervisado para clasificación (aunque también puede usarse para problemas de regresión).

¿Cómo surge Random Forest?

Uno de los problemas que aparecía con la creación de un árbol de decisión es que si le damos la profundidad suficiente, el árbol tiende a «memorizar» las soluciones en vez de generalizar el aprendizaje. Es decir, a padecer de overfitting. La solución para evitar esto es la de crear muchos árboles y que trabajen en conjunto. Veamos cómo.

Cómo funciona Random Forest?

Random Forest funciona así:

Continuar leyendo «Random Forest, el poder del Ensamble»

Clasificación con datos desbalanceados

Contrarrestar problemas con clases desbalanceadas

Estrategias para resolver desequilibrio de datos en Python con la librería imbalanced-learn.

Tabla de contenidos:

  1. ¿Qué son las clases desequilibradas en un dataset?
  2. Métricas y Confusión Matrix
  3. Ejercicio con Python
  4. Estrategias
  5. Modelo sin modificar
  6. Penalización para compensar / Métricas
  7. Resampling y Muestras sintéticas
    1. subsampling
    2. oversamplig
    3. combinación
  8. Balanced Ensemble

Empecemos!

Continuar leyendo «Clasificación con datos desbalanceados»

¿Cómo funcionan las Convolutional Neural Networks? Visión por Ordenador

En este artículo intentaré explicar la teoría relativa a las Redes Neuronales Convolucionales (en inglés CNN) que son el algoritmo utilizado en Aprendizaje Automático para dar la capacidad de «ver» al ordenador. Gracias a esto, desde apenas 1998, podemos clasificar imágenes, detectar diversos tipos de tumores automáticamente, enseñar a conducir a los coches autónomos y un sinfín de otras aplicaciones.

El tema es bastante complejo/complicado e intentaré explicarlo lo más claro posible. En este artículo doy por sentado que tienes conocimientos básicos de cómo funciona una red neuronal artificial multicapa feedforward (fully connected). Si no es así te recomiendo que antes leas sobre ello:

¿Qúe es una CNN? ¿Cómo puede ver una red neuronal? ¿Cómo clasifica imagenes y distingue un perro de un gato?

La CNN es un tipo de Red Neuronal Artificial con aprendizaje supervisado que procesa sus capas imitando al cortex visual del ojo humano para identificar distintas características en las entradas que en definitiva hacen que pueda identificar objetos y «ver». Para ello, la CNN contiene varias capas ocultas especializadas y con una jerarquía: esto quiere decir que las primeras capas pueden detectar lineas, curvas y se van especializando hasta llegar a capas más profundas que reconocen formas complejas como un rostro o la silueta de un animal.

Necesitaremos…

Recodemos que la red neuronal deberá aprender por sí sola a reconocer una diversidad de objetos dentro de imágenes y para ello necesitaremos una gran cantidad de imágenes -lease más de 10.000 imágenes de gatos, otras 10.000 de perros,…- para que la red pueda captar sus características únicas -de cada objeto- y a su vez, poder generalizarlo -esto es que pueda reconocer como gato tanto a un felino negro, uno blanco, un gato de frente, un gato de perfil, gato saltando, etc.-

Pixeles y neuronas

Continuar leyendo «¿Cómo funcionan las Convolutional Neural Networks? Visión por Ordenador»

Clasificación de Imágenes en Python

Crearemos una Convolutional Neural Network con Keras y Tensorflow en Python para reconocimiento de Imágenes.

En este artículo iremos directo al grano: veremos el código que crea la red neuronal para visión por computador. En un próximo artículo explicaré bien los conceptos utilizados, pero esta vez haremos un aprendizaje Top-down 😉

Ejercicio Propuesto: Clasificar imágenes de deportes

Para el ejercicio se me ocurrió crear «mi propio set MNIST» con imágenes de deportes. Para ello, seleccioné los 10 deportes más populares del mundo -según la sabiduría de internet- : Fútbol, Basket, Golf, Futbol Americano, Tenis, Fórmula 1, Ciclismo, Boxeo, Beisball y Natación (enumerados sin orden particular entre ellos).

Obtuve entre 5000 y 9000 imágenes de cada deporte, a partir de videos de Youtube (usando a FFMpeg!). Las imágenes están en tamaño <<diminuto>> de 21×28 pixeles en color y son un total de 77.000. Si bien el tamaño en pixeles puede parecer pequeño ES SUFICIENTE para que nuestra red neuronal pueda distinguirlas!!! (¿increíble, no?).

Entonces el objetivo es que nuestra máquina: «red neuronal convolucional» aprenda a clasificar -por sí sóla-, dada una nueva imagen, de qué deporte se trata.

Ejemplo de imágenes de los deportes más populares del mundo

Dividiremos el set de datos en 80-20 para entrenamiento y para test. A su vez, el conjunto de entrenamiento también lo subdividiremos en otro 80-20 para Entrenamiento y Validación en cada iteración (EPOCH) de aprendizaje.

Una muestra de las imágenes del Dataset que he titulado sportsMNIST. Contiene más de 70.000 imágenes de los 10 deportes más populares del mundo.

Continuar leyendo «Clasificación de Imágenes en Python»

Comprende Principal Component Analysis

En este artículo veremos una herramienta muy importante para nuestro kit de Machine Learning y Data Science: PCA para Reducción de dimensiones. Como bonus-track veremos un ejemplo rápido-sencillo en Python usando Scikit-learn.

Introducción a PCA

Imaginemos que queremos predecir los precios de alquiler de vivienda del mercado. Al recopilar información de diversas fuentes tendremos en cuenta variables como tipo de vivienda, tamaño de vivienda, antigüedad, servicios, habitaciones, con/sin jardín, con/sin piscina, con/sin muebles  pero también podemos tener en cuenta la distancia al centro, si hay colegio en las cercanías, o supermercados, si es un entorno ruidoso, si tiene autopistas en las cercanías, la «seguridad del barrio», si se aceptan mascotas, tiene wifi, tiene garaje, trastero… y seguir y seguir sumando variables.

Es posible que cuanta más (y mejor) información, obtengamos una predicción más acertada. Pero también empezaremos a notar que la ejecución de nuestro algoritmo seleccionado (regresión lineal, redes neuronales, etc.) empezará a tomar más y más tiempo y recursos. Es posible que algunas de las variables sean menos importantes y no aporten demasiado valor a la predicción. También podríamos acercarnos peligrosamente a causar overfitting al modelo.

¿No sería mejor tomar menos variables, pero más valiosas?

Continuar leyendo «Comprende Principal Component Analysis»

¿Comprar casa o Alquilar? Naive Bayes usando Python

Hoy veremos un nuevo ejercicio práctico, intentando llevar los algoritmos de Machine Learning a ejemplos claros y de la vida real, repasaremos la teoría del Teorema de Bayes (video) de estadística para poder tomar una decisión muy importante: ¿me conviene comprar casa ó alquilar?

Veamos si la Ciencia de Datos nos puede ayudar a resolver el misterio… ¿Si alquilo estoy tirando el dinero a la basura? ó ¿Es realmente conveniente pagar una hipoteca durante el <<resto de mi vida>>?

Si bien tocaremos el tema livianamente -sin meternos en detalles como intereses de hipotecas variable/fija, porcentajes, comisiones de bancos,etc- haremos un planteo genérico para obtener resultados y tomar la mejor decisión dada nuestra condición actual.

En artículos pasados vimos diversos algoritmos Supervisados del Aprendizaje Automático que nos dejan clasificar datos y/o obtener predicciones o asistencia a la toma de decisiones (árbol de decisión, regresión logística y lineal, red neuronal). Por lo general esos algoritmos intentan minimizar algún tipo de coste iterando las entradas y las salidas y ajustando internamente las «pendientes» ó «pesos» para hallar una salida. Esta vez, el algoritmo que usaremos se basa completamente en teoría de probabilidades  y obteniendo resultados estadísticos. ¿Será suficiente el Teorema de Bayes para obtener buenas decisiones? Veamos!

Continuar leyendo «¿Comprar casa o Alquilar? Naive Bayes usando Python»