Perfiles y Roles para Proyectos IA, Machine Learning y Data Science

Queremos desarrollar un proyecto que contiene un alto grado de componente de Inteligencia Artificial, ya sea mediante Aprendizaje Automático ó Deep Learning, para predicción, clasificación ó clusterización (entre otros). ¿Qué personas debemos contratar? ¿Cómo podemos conformar un equipo para enfrentar este desafío? ¿Cuál es el ciclo de vida de un proyecto de IA?

En este artículo intentaré comentar los seis perfiles más frecuentes solicitados por la industria en la actualidad, sus diversos roles. El artículo esta fuertemente basado en el reporte 2020 de Workera.

El proyecto de ML

Primero definamos en grandes rasgos las diversas etapas que conforman el desarrollo de un proyecto de Machine Learning.

  1. Análisis de Negocio
  2. Infraestructura de IA
  3. Ingeniería de Datos
  4. Modelado
  5. Implementación / Despliegue
Read More

Análisis Exploratorio de Datos con Pandas en Python

Veremos de qué se trata este paso inicial tan importante y necesario para comenzar un proyecto de Machine Learning. Aprendamos en qué consiste el EDA y qué técnicas utilizar. Veamos un ejemplo práctico y la manipulación de datos con Python utilizando la librería Pandas para analizar y Visualizar la información en pocos minutos.

Como siempre, podrás descargar todo el código de la Jupyter Notebook desde mi cuenta de Github (que contiene información extra). Y como BONUS encuentra una notebook con las funciones más útiles de Pandas!

¿Qué es el EDA?

Eda es la sigla en inglés para Exploratory Data Analysis y consiste en una de las primeras tareas que tiene que desempeñar el Científico de Datos. Es cuando revisamos por primera vez los datos que nos llegan, por ejemplo un archivo CSV que nos entregan y deberemos intentar comprender “¿de qué se trata?”, vislumbrar posibles patrones y reconociendo distribuciones estadísticas que puedan ser útiles en el futuro.

Read More

Sistemas de Recomendación

Crea en Python un motor de recomendación con Collaborative Filtering

Una de las herramientas más conocidas y utilizadas que aportó el Machine Learning fueron los sistemas de Recomendación. Son tan efectivas que estamos invadidos todos los días por recomendaciones, sugerencias y “productos relacionados” aconsejados por distintas apps y webs.

Sin dudas, los casos más conocidos de uso de esta tecnología son Netflix acertando en recomendar series y películas, Spotify sugiriendo canciones y artistas ó Amazon ofreciendo productos de venta cruzada <<sospechosamente>> muy tentadores para cada usuario.

Pero también Google nos sugiere búsquedas relacionadas, Android aplicaciones en su tienda y Facebook amistades. O las típicas “lecturas relacionadas” en los blogs y periódicos.

Todo E-Comerce que se precie de serlo debe utilizar esta herramienta y si no lo hace… estará perdiendo una ventaja competitiva para potenciar sus ventas.

¿Qué son los Sistemas ó Motores de Recomendación?

Read More

Clasificación con datos desbalanceados

Contrarrestar problemas con clases desbalanceadas

Estrategias para resolver desequilibrio de datos en Python con la librería imbalanced-learn.

Tabla de contenidos:

  1. ¿Qué son las clases desequilibradas en un dataset?
  2. Métricas y Confusión Matrix
  3. Ejercicio con Python
  4. Estrategias
  5. Modelo sin modificar
  6. Penalización para compensar / Métricas
  7. Resampling y Muestras sintéticas
    1. subsampling
    2. oversamplig
    3. combinación
  8. Balanced Ensemble

Empecemos!

Read More