Sistemas de Recomendación

Crea en Python un motor de recomendación con Collaborative Filtering

Una de las herramientas más conocidas y utilizadas que aportó el Machine Learning fueron los sistemas de Recomendación. Son tan efectivas que estamos invadidos todos los días por recomendaciones, sugerencias y «productos relacionados» aconsejados por distintas apps y webs.

Sin dudas, los casos más conocidos de uso de esta tecnología son Netflix acertando en recomendar series y películas, Spotify sugiriendo canciones y artistas ó Amazon ofreciendo productos de venta cruzada <<sospechosamente>> muy tentadores para cada usuario.

Pero también Google nos sugiere búsquedas relacionadas, Android aplicaciones en su tienda y Facebook amistades. O las típicas «lecturas relacionadas» en los blogs y periódicos.

Todo E-Comerce que se precie de serlo debe utilizar esta herramienta y si no lo hace… estará perdiendo una ventaja competitiva para potenciar sus ventas.

¿Qué son los Sistemas ó Motores de Recomendación?

Read More

Ejemplo Web Scraping en Python: IBEX35® la Bolsa de Madrid

En este artículo aprenderemos a utilizar la librería BeatifulSoap de Python para obtener contenidos de páginas webs de manera automática.

En internet encontramos de todo: artículos, noticias, estadísticas e información útil (¿e inútil?), pero ¿cómo la extraemos? No siempre se encuentra en forma de descarga ó puede haber información repartida en multiples dominios, ó puede que necesitemos información histórica, de webs que cambian con el tiempo.

Para poder generar nuestros propios archivos con los datos que nos interesan y de manera automática es que utilizaremos la técnica de WebScraping.

Contenidos:

  • Requerimientos para WebScraping
  • Lo básico de HTML y CSS que debes saber
  • Inspeccionar manualmente una página web
  • Al código! Obtener el valor actual del IBEX35® de la Bolsa de Madrid
  • Exportar a archivo csv (y poder abrir en Excel)
  • Otros casos frecuentes de «rascar la web»

Puedes ver y descargar el código python completo de este artículo desde GitHub haciendo click aquí

Read More