Detección de Objetos con Python

En este artículo podrás ver de manera práctica cómo crear tu propio detector de objetos que podrás utilizar con imagenes estáticas, video o cámara. Avanzaremos paso a paso en una Jupyter Notebook con el código completo usando redes neuronales profundas con Keras sobre Tensorflow.

Antes de empezar te recomiendo que leas mis artículos anteriores sobre Visión Artificial, que te ayudarán con las bases teóricas sobre las que nos apoyamos en este ejercicio:

Agenda

Tenemos mucho por delante! Antes que nada debo aclarar que próximamente un nuevo artículo explicará toda la teoría que hoy aplicaremos, pero mientras llega… pasemos a la acción!

  • ¿En qué consiste la Detección Yolo?
    • Algunos parámetros de la red
    • El proyecto propuesto
  • Lo que tienes que instalar (y todo el material)
  • Crear un dataset: Imágenes y Anotaciones
    • Recomendaciones para la imágenes
    • Anotarlo todo
    • El lego dataset
  • El código Python
    • Leer el dataset
    • Train y Validación
    • Data Augmentation
    • Crear la red YOLO
    • Crear la red de Detección
    • Generar las Anclas
    • Entrenar
    • Revisar los Resultados
    • Probar la red!
  • Conclusiones
  • Material Adicional

¿En qué consiste la detección YOLO?

Vamos a hacer un detector de objetos en imágenes utilizando YOLO, un tipo de técnica muy novedosa (2016), acrónimo de “You Only Look Once” y que es la más rápida del momento, permitiendo su uso en video en tiempo real.

Esta técnica utiliza un tipo de red Neuronal Convolucional llamada Darknet para la clasificacion de imágenes y le añade la parte de la detección, es decir un “cuadradito” con las posiciones x e y, alto y ancho del objeto encontrado.

La dificultad de esta tarea es enorme: poder localizar las áreas de las imágenes, que para una red neuronal es tan sólo una matriz de pixeles de colores, posicionar múltiples objetos y clasificarlos. YOLO lo hace todo “de una sola pasada” a su red convolucional. En resultados sobre el famoso COCO Dataset clasifica y detecta 80 clases de objetos distintos y etiquetar y posicionar hasta 1000 objetos (en 1 imagen!)

Read More

Pronóstico de Ventas con Redes Neuronales – Parte 2

Mejora del modelo de Series Temporales con Múltiples Variables y Embeddings

Este artículo es la continuación del post anterior “Pronóstico de Series Temporales con Redes Neuronales en Python” en donde vimos cómo a partir de un archivo de entrada con las unidades vendidas por una empresa durante años anteriores, podíamos estimar las ventas de la próxima semana. Continuaremos a partir de ese modelo -por lo que te recomiendo leer antes de continuar- y haremos propuestas para mejorar la predicción.

Breve Repaso de lo que hicimos

En el modelo del capitulo anterior creamos una Red Neuronal MLP (Multilayered Perceptron) feedforward de pocas capas, y el mayor trabajo que hicimos fue en los datos de entrada. Puesto que sólo tenemos un archivo csv con 2 columnas: fecha y unidades vendidas lo que hicimos fue transformar esa entrada en un “problema de aprendizaje supervisado“. Para ello, creamos un “nuevo archivo” de entrada con 7 columnas en donde poníamos la cantidad de unidades vendidas en los 7 días anteriores y de salida la cantidad de unidades vendidas en “la fecha actual”. De esa manera alimentamos la red y ésta fue capaz de realizar pronósticos aceptables. Sólo utilizamos la columna de unidades. Pero no utilizamos la columna de fecha. ¿Podría ser la columna de fecha un dato importante? ¿podría mejorar nuestra predicción de ventas?

Mejoras al modelo de Series Temporales

Esto es lo que haremos hoy: propongo 2 nuevos modelos con Redes Neuronales Feedforward para intentar mejorar los pronósticos de ventas:

  • Un primer modelo tomando la fecha como nueva variable de entrada valiosa y que aporta datos.
  • Un segundo modelo también usando la fecha como variable adicional, pero utilizándola con Embeddings… y a ver si mejora el pronóstico.

Por lo tanto explicaremos lo qué son los embeddings utilizados en variables categóricas (se utiliza mucho en problemas de Procesamiento del Lenguaje Natural NLP para modelar).

Read More

¿Cómo funcionan las Convolutional Neural Networks? Visión por Ordenador

En este artículo intentaré explicar la teoría relativa a las Redes Neuronales Convolucionales (en inglés CNN) que son el algoritmo utilizado en Aprendizaje Automático para dar la capacidad de “ver” al ordenador. Gracias a esto, desde apenas 1998, podemos clasificar imágenes, detectar diversos tipos de tumores automáticamente, enseñar a conducir a los coches autónomos y un sinfín de otras aplicaciones.

El tema es bastante complejo/complicado e intentaré explicarlo lo más claro posible. En este artículo doy por sentado que tienes conocimientos básicos de cómo funciona una red neuronal artificial multicapa feedforward (fully connected). Si no es así te recomiendo que antes leas sobre ello:

¿Qúe es una CNN? ¿Cómo puede ver una red neuronal? ¿Cómo clasifica imagenes y distingue un perro de un gato?

La CNN es un tipo de Red Neuronal Artificial con aprendizaje supervisado que procesa sus capas imitando al cortex visual del ojo humano para identificar distintas características en las entradas que en definitiva hacen que pueda identificar objetos y “ver”. Para ello, la CNN contiene varias capas ocultas especializadas y con una jerarquía: esto quiere decir que las primeras capas pueden detectar lineas, curvas y se van especializando hasta llegar a capas más profundas que reconocen formas complejas como un rostro o la silueta de un animal.

Necesitaremos…

Recodemos que la red neuronal deberá aprender por sí sola a reconocer una diversidad de objetos dentro de imágenes y para ello necesitaremos una gran cantidad de imágenes -lease más de 10.000 imágenes de gatos, otras 10.000 de perros,…- para que la red pueda captar sus características únicas -de cada objeto- y a su vez, poder generalizarlo -esto es que pueda reconocer como gato tanto a un felino negro, uno blanco, un gato de frente, un gato de perfil, gato saltando, etc.-

Pixeles y neuronas

Read More

Clasificación de Imágenes en Python

Crearemos una Convolutional Neural Network con Keras y Tensorflow en Python para reconocimiento de Imágenes.

En este artículo iremos directo al grano: veremos el código que crea la red neuronal para visión por computador. En un próximo artículo explicaré bien los conceptos utilizados, pero esta vez haremos un aprendizaje Top-down 😉

Ejercicio Propuesto: Clasificar imágenes de deportes

Para el ejercicio se me ocurrió crear “mi propio set MNIST” con imágenes de deportes. Para ello, seleccioné los 10 deportes más populares del mundo -según la sabiduría de internet- : Fútbol, Basket, Golf, Futbol Americano, Tenis, Fórmula 1, Ciclismo, Boxeo, Beisball y Natación (enumerados sin orden particular entre ellos).

Obtuve entre 5000 y 9000 imágenes de cada deporte, a partir de videos de Youtube (usando a FFMpeg!). Las imágenes están en tamaño <<diminuto>> de 21×28 pixeles en color y son un total de 77.000. Si bien el tamaño en pixeles puede parecer pequeño ES SUFICIENTE para que nuestra red neuronal pueda distinguirlas!!! (¿increíble, no?).

Entonces el objetivo es que nuestra máquina: “red neuronal convolucional” aprenda a clasificar -por sí sóla-, dada una nueva imagen, de qué deporte se trata.

Ejemplo de imágenes de los deportes más populares del mundo

Dividiremos el set de datos en 80-20 para entrenamiento y para test. A su vez, el conjunto de entrenamiento también lo subdividiremos en otro 80-20 para Entrenamiento y Validación en cada iteración (EPOCH) de aprendizaje.

Una muestra de las imágenes del Dataset que he titulado sportsMNIST. Contiene más de 70.000 imágenes de los 10 deportes más populares del mundo.

Read More