Comprende Principal Component Analysis

En este artículo veremos una herramienta muy importante para nuestro kit de Machine Learning y Data Science: PCA para Reducción de dimensiones. Como bonus-track veremos un ejemplo rápido-sencillo en Python usando Scikit-learn.

Introducción a PCA

Imaginemos que queremos predecir los precios de alquiler de vivienda del mercado. Al recopilar información de diversas fuentes tendremos en cuenta variables como tipo de vivienda, tamaño de vivienda, antigüedad, servicios, habitaciones, con/sin jardín, con/sin piscina, con/sin muebles  pero también podemos tener en cuenta la distancia al centro, si hay colegio en las cercanías, o supermercados, si es un entorno ruidoso, si tiene autopistas en las cercanías, la «seguridad del barrio», si se aceptan mascotas, tiene wifi, tiene garaje, trastero… y seguir y seguir sumando variables.

Es posible que cuanta más (y mejor) información, obtengamos una predicción más acertada. Pero también empezaremos a notar que la ejecución de nuestro algoritmo seleccionado (regresión lineal, redes neuronales, etc.) empezará a tomar más y más tiempo y recursos. Es posible que algunas de las variables sean menos importantes y no aporten demasiado valor a la predicción. También podríamos acercarnos peligrosamente a causar overfitting al modelo.

¿No sería mejor tomar menos variables, pero más valiosas?

Read More

¿Comprar casa o Alquilar? Naive Bayes usando Python

Hoy veremos un nuevo ejercicio práctico, intentando llevar los algoritmos de Machine Learning a ejemplos claros y de la vida real, repasaremos la teoría del Teorema de Bayes (video) de estadística para poder tomar una decisión muy importante: ¿me conviene comprar casa ó alquilar?

Veamos si la Ciencia de Datos nos puede ayudar a resolver el misterio… ¿Si alquilo estoy tirando el dinero a la basura? ó ¿Es realmente conveniente pagar una hipoteca durante el <<resto de mi vida>>?

Si bien tocaremos el tema livianamente -sin meternos en detalles como intereses de hipotecas variable/fija, porcentajes, comisiones de bancos,etc- haremos un planteo genérico para obtener resultados y tomar la mejor decisión dada nuestra condición actual.

En artículos pasados vimos diversos algoritmos Supervisados del Aprendizaje Automático que nos dejan clasificar datos y/o obtener predicciones o asistencia a la toma de decisiones (árbol de decisión, regresión logística y lineal, red neuronal). Por lo general esos algoritmos intentan minimizar algún tipo de coste iterando las entradas y las salidas y ajustando internamente las «pendientes» ó «pesos» para hallar una salida. Esta vez, el algoritmo que usaremos se basa completamente en teoría de probabilidades  y obteniendo resultados estadísticos. ¿Será suficiente el Teorema de Bayes para obtener buenas decisiones? Veamos!

Read More

Clasificar con K-Nearest-Neighbor ejemplo en Python

K-Nearest-Neighbor es un algoritmo basado en instancia de tipo supervisado de Machine Learning. Puede usarse para clasificar nuevas muestras (valores discretos) o para predecir (regresión, valores continuos). Al ser un método sencillo, es ideal para introducirse en el mundo del  Aprendizaje Automático. Sirve esencialmente para clasificar valores buscando los puntos de datos «más similares» (por cercanía) aprendidos en la etapa de entrenamiento (ver 7 pasos para crear tu ML) y haciendo conjeturas de nuevos puntos basado en esa clasificación.

A diferencia de K-means, que es un algoritmo no supervisado y donde la «K» significa la cantidad de «grupos» (clusters) que deseamos clasificar, en K-Nearest Neighbor la «K» significa la cantidad de «puntos vecinos» que tenemos en cuenta en las cercanías para clasificar los «n» grupos -que ya se conocen de antemano, pues es un algoritmo supervisado-.

¿Qué es el algoritmo k-Nearest Neighbor ?

Read More

Arbol de Decisión en Python: Clasificación y predicción.

En este artículo describiremos rápidamente en qué consisten y cómo funcionan los árboles de decisión utilizados en Aprendizaje Automático y nos centraremos en un divertido ejemplo en Python en el que analizaremos a los cantantes y bandas que lograron un puesto número uno en las listas de Billboard Hot 100 e intentaremos predecir quién será el próximo Ed Sheeran a fuerza de Inteligencia Artificial. Realizaremos Gráficas que nos ayudarán a visualizar los datos de entrada y un grafo para interpretar el árbol que crearemos con el paquete Scikit-Learn. Comencemos!

¿Qué es un árbol de decisión?

Los arboles de decisión son representaciones gráficas de posibles soluciones a una decisión basadas en ciertas condiciones, es uno de los algoritmos de aprendizaje supervisado más utilizados en machine learning y pueden realizar tareas de clasificación o regresión (acrónimo del inglés CART). La comprensión de su funcionamiento suele ser simple y a la vez muy potente.

Utilizamos mentalmente estructuras de árbol de decisión constantemente en nuestra vida diaria sin darnos cuenta:

Read More