Pronóstico de Ventas con Redes Neuronales – Parte 2

Mejora del modelo de Series Temporales con Múltiples Variables y Embeddings

Este artículo es la continuación del post anterior «Pronóstico de Series Temporales con Redes Neuronales en Python» en donde vimos cómo a partir de un archivo de entrada con las unidades vendidas por una empresa durante años anteriores, podíamos estimar las ventas de la próxima semana. Continuaremos a partir de ese modelo -por lo que te recomiendo leer antes de continuar- y haremos propuestas para mejorar la predicción.

Breve Repaso de lo que hicimos

En el modelo del capitulo anterior creamos una Red Neuronal MLP (Multilayered Perceptron) feedforward de pocas capas, y el mayor trabajo que hicimos fue en los datos de entrada. Puesto que sólo tenemos un archivo csv con 2 columnas: fecha y unidades vendidas lo que hicimos fue transformar esa entrada en un «problema de aprendizaje supervisado«. Para ello, creamos un «nuevo archivo» de entrada con 7 columnas en donde poníamos la cantidad de unidades vendidas en los 7 días anteriores y de salida la cantidad de unidades vendidas en «la fecha actual». De esa manera alimentamos la red y ésta fue capaz de realizar pronósticos aceptables. Sólo utilizamos la columna de unidades. Pero no utilizamos la columna de fecha. ¿Podría ser la columna de fecha un dato importante? ¿podría mejorar nuestra predicción de ventas?

Mejoras al modelo de Series Temporales

Esto es lo que haremos hoy: propongo 2 nuevos modelos con Redes Neuronales Feedforward para intentar mejorar los pronósticos de ventas:

  • Un primer modelo tomando la fecha como nueva variable de entrada valiosa y que aporta datos.
  • Un segundo modelo también usando la fecha como variable adicional, pero utilizándola con Embeddings… y a ver si mejora el pronóstico.

Por lo tanto explicaremos lo qué son los embeddings utilizados en variables categóricas (se utiliza mucho en problemas de Procesamiento del Lenguaje Natural NLP para modelar).

Read More

Pronóstico de Series Temporales con Redes Neuronales en Python

En el artículo de hoy veremos qué son las series temporales y cómo predecir su comportamiento utilizando redes neuronales con Keras y Tensorflow. Repasaremos el código completo en Python y la descarga del archivo csv del ejercicio propuesto con los datos de entrada.

¿Qué es una serie temporal y qué tiene de especial?

Una serie temporal es un conjunto de muestras tomadas a intervalos de tiempo regulares. Es interesante analizar su comportamiento al mediano y largo plazo, intentando detectar patrones y poder hacer pronósticos de cómo será su comportamiento futuro. Lo que hace <<especial>> a una Time Series a diferencia de un «problema» de Regresión son dos cosas:

  1. Es dependiente del Tiempo. Esto rompe con el requerimiento que tiene la regresión lineal de que sus observaciones sean independientes.
  2. Suelen tener algún tipo de estacionalidad, ó de tendencias a crecer ó decrecer. Pensemos en cuánto más producto vende una heladería en sólo 4 meses al año que en el resto de estaciones.

Ejemplo de series temporales son:

  • Capturar la temperatura, humedad y presión de una zona a intervalos de 15 minutos.
  • Valor de las acciones de una empresa en la bolsa minuto a minuto.
  • Ventas diarias (ó mensuales) de una empresa.
  • Producción en Kg de una cosecha cada semestre.

Creo que con eso ya se dan una idea 🙂 Como también pueden entrever, las series temporales pueden ser de 1 sóla variable, ó de múltiples.

Vamos a comenzar con la práctica, cargando un dataset que contiene información de casi 2 años de ventas diarias de productos. Los campos que contiene son fecha y la cantidad de unidades vendidas.

Read More

Comprende Principal Component Analysis

En este artículo veremos una herramienta muy importante para nuestro kit de Machine Learning y Data Science: PCA para Reducción de dimensiones. Como bonus-track veremos un ejemplo rápido-sencillo en Python usando Scikit-learn.

Introducción a PCA

Imaginemos que queremos predecir los precios de alquiler de vivienda del mercado. Al recopilar información de diversas fuentes tendremos en cuenta variables como tipo de vivienda, tamaño de vivienda, antigüedad, servicios, habitaciones, con/sin jardín, con/sin piscina, con/sin muebles  pero también podemos tener en cuenta la distancia al centro, si hay colegio en las cercanías, o supermercados, si es un entorno ruidoso, si tiene autopistas en las cercanías, la «seguridad del barrio», si se aceptan mascotas, tiene wifi, tiene garaje, trastero… y seguir y seguir sumando variables.

Es posible que cuanta más (y mejor) información, obtengamos una predicción más acertada. Pero también empezaremos a notar que la ejecución de nuestro algoritmo seleccionado (regresión lineal, redes neuronales, etc.) empezará a tomar más y más tiempo y recursos. Es posible que algunas de las variables sean menos importantes y no aporten demasiado valor a la predicción. También podríamos acercarnos peligrosamente a causar overfitting al modelo.

¿No sería mejor tomar menos variables, pero más valiosas?

Read More

¿Comprar casa o Alquilar? Naive Bayes usando Python

Hoy veremos un nuevo ejercicio práctico, intentando llevar los algoritmos de Machine Learning a ejemplos claros y de la vida real, repasaremos la teoría del Teorema de Bayes (video) de estadística para poder tomar una decisión muy importante: ¿me conviene comprar casa ó alquilar?

Veamos si la Ciencia de Datos nos puede ayudar a resolver el misterio… ¿Si alquilo estoy tirando el dinero a la basura? ó ¿Es realmente conveniente pagar una hipoteca durante el <<resto de mi vida>>?

Si bien tocaremos el tema livianamente -sin meternos en detalles como intereses de hipotecas variable/fija, porcentajes, comisiones de bancos,etc- haremos un planteo genérico para obtener resultados y tomar la mejor decisión dada nuestra condición actual.

En artículos pasados vimos diversos algoritmos Supervisados del Aprendizaje Automático que nos dejan clasificar datos y/o obtener predicciones o asistencia a la toma de decisiones (árbol de decisión, regresión logística y lineal, red neuronal). Por lo general esos algoritmos intentan minimizar algún tipo de coste iterando las entradas y las salidas y ajustando internamente las «pendientes» ó «pesos» para hallar una salida. Esta vez, el algoritmo que usaremos se basa completamente en teoría de probabilidades  y obteniendo resultados estadísticos. ¿Será suficiente el Teorema de Bayes para obtener buenas decisiones? Veamos!

Read More