¿Machine Learning en la Nube? Google Colaboratory con GPU!

Por increíble que parezca, ahora mismo tenemos disponible una cuenta gratuita para programar nuestros modelos de Machine Learning en la nube, con Python, Jupyter Notebooks de manera remota y hasta con GPU para poder aumentar nuestro poder de procesamiento…. gratis! sí sí… esto no es un “cuento del tío” ni tiene ninguna trampa!… Descubre cómo aprovecharlo en este artículo!

Machine Learning desde el Navegador

Primero lo primero. ¿Porqué voy a querer tener mi código en la nube? Pues bien, lo normal (¿ideal?) es que tengamos un entorno de desarrollo local en nuestro propio ordenador, un entorno de pruebas en algún servidor, staging y producción. Pero… ¿qué pasa si aún no tenemos instalado el ambiente?, o tenemos conflictos con algún archivo/librería, versión de Python… ó por lo que sea no tenemos espacio en disco… ó hasta si nos va muy lento y no disponemos en -el corto plazo- de mayor procesador/ram? O hasta por simple comodidad, está siempre bien tener a mano una web online, “siempre lista” en donde ya esté prácticamente todo el software que necesitamos instalado. Y ese servicio lo da Google, entre otras opciones. Lo interesante es que Google Colab ofrece varias ventajas frente a sus competidores.

interesante es que Google Colab ofrece varias ventajas frente a sus competidores.

La GPU…. ¿en casa o en la nube?

¿Una GPU? ¿para que quiero eso si ya tengo como 8 núcleos? La realidad es que para el procesamiento de algoritmos de Aprendizaje Automático (y para videojuegos, ejem!) la GPU resulta mucho más potente en realizar cálculos (también en paralelo) por ejemplo las multiplicaciones matriciales… esas que HACEMOS TOooooDO el tiempo al ENTRENAR nuestros modelos!!! para hacer el descenso por gradiente ó Toooodo el rato con el Backpropagation de nuestras redes neuronales… Esto supone una mejora de hasta 10x en velocidad de procesado… Algoritmos que antes tomaban días y ahora se resuelven en horas. Un avance enorme.

Si tienes una tarjeta Nvidia con GPU ya instalada, felicidades ya tienes el poder! Si no la tienes y no vas a invertir unos cuántos dólares en comprarla, puedes tener toda(*) su potencia desde la nube!

(*)NOTA: Google se reserva el poder limitar el uso de GPU si considera que estás abusando ó utilizando en demasía ese recurso ó para fines indebidos (por ej. minería de bitcoins)

Bienvenidos a Google Colaboratory

¿Qué es Google Colab?

Read More

NLP: Analizamos los cuentos de Hernan Casciari

Ejercicio Python de Procesamiento del Lenguaje Natural

( ó “¿Qué tiene Casciari en la cabeza?” )

Ejercicio Procesamiento del Lenguaje Natural

Luego de haber escrito sobre la teoría de iniciación al NLP en el artículo anterior llega la hora de hacer algunos ejercicios prácticos en código Python para adentrarnos en este mundo.

Como la idea es hacer Aprendizaje Automático en Español, se me ocurrió buscar textos en castellano y recordé a Hernan Casciari que tiene los cuentos de su blog disponibles online y me pareció un buen desafío.

Para quien no conozca a Hernan Casciari, es un escritor genial, hace cuentos muy entretenidos, de humor (y drama) muy reales, relacionados con su vida, infancia, relaciones familiares con toques de ficción. Vivió en España durante más de una década y tuvo allí a su primera hija. En 2005 fue premiado como “El mejor blog del mundo” por Deutsche Welle de Alemania. En 2008 Antonio Gasalla tomó su obra “Más respeto que soy tu madre” y la llevó al teatro con muchísimo éxito. Escribió columnas para importantes periódicos de España y Argentina hasta que fundó su propia editorial Orsai en 2010 donde no depende de terceros para comercializar ni distribuir sus productos y siempre ofrece versione en pdf (gratuitos). Tiene 7 libros publicados, apariciones en radio (Vorterix y Perros de la Calle) y hasta llevó sus historias a una genial puesta en escena llamada “Obra en Construcción” que giró por muchas provincias de la Argentina, España y Uruguay.

Línea del Tiempo, vida blogger de Hernan Casciari

Agenda del Día: “NLP tradicional”

Lo cierto es que utilizaremos la librería python NLTK para NLP y haremos uso de varias funciones y análisis tradicionales, me refiero a que sin meternos – aún- en Deep Learning (eso lo dejaremos para otro futuro artículo).

  1. Obtener los Datos (los cuentos)
  2. Exploración Inicial
  3. Limpieza de datos
  4. Análisis Exploratorio
  5. Análisis de Sentimiento
  6. Modelado de Tópicos

Vamos al código!

Read More

Clasificación de Imágenes en Python

Crearemos una Convolutional Neural Network con Keras y Tensorflow en Python para reconocimiento de Imágenes.

En este artículo iremos directo al grano: veremos el código que crea la red neuronal para visión por computador. En un próximo artículo explicaré bien los conceptos utilizados, pero esta vez haremos un aprendizaje Top-down 😉

Ejercicio Propuesto: Clasificar imágenes de deportes

Para el ejercicio se me ocurrió crear “mi propio set MNIST” con imágenes de deportes. Para ello, seleccioné los 10 deportes más populares del mundo -según la sabiduría de internet- : Fútbol, Basket, Golf, Futbol Americano, Tenis, Fórmula 1, Ciclismo, Boxeo, Beisball y Natación (enumerados sin orden particular entre ellos).

Obtuve entre 5000 y 9000 imágenes de cada deporte, a partir de videos de Youtube (usando a FFMpeg!). Las imágenes están en tamaño <<diminuto>> de 21×28 pixeles en color y son un total de 77.000. Si bien el tamaño en pixeles puede parecer pequeño ES SUFICIENTE para que nuestra red neuronal pueda distinguirlas!!! (¿increíble, no?).

Entonces el objetivo es que nuestra máquina: “red neuronal convolucional” aprenda a clasificar -por sí sóla-, dada una nueva imagen, de qué deporte se trata.

Ejemplo de imágenes de los deportes más populares del mundo

Dividiremos el set de datos en 80-20 para entrenamiento y para test. A su vez, el conjunto de entrenamiento también lo subdividiremos en otro 80-20 para Entrenamiento y Validación en cada iteración (EPOCH) de aprendizaje.

Una muestra de las imágenes del Dataset que he titulado sportsMNIST. Contiene más de 70.000 imágenes de los 10 deportes más populares del mundo.

Read More

¿Comprar casa o Alquilar? Naive Bayes usando Python

Hoy veremos un nuevo ejercicio práctico, intentando llevar los algoritmos de Machine Learning a ejemplos claros y de la vida real, repasaremos la teoría del Teorema de Bayes (video) de estadística para poder tomar una decisión muy importante: ¿me conviene comprar casa ó alquilar?

Veamos si la Ciencia de Datos nos puede ayudar a resolver el misterio… ¿Si alquilo estoy tirando el dinero a la basura? ó ¿Es realmente conveniente pagar una hipoteca durante el <<resto de mi vida>>?

Si bien tocaremos el tema livianamente -sin meternos en detalles como intereses de hipotecas variable/fija, porcentajes, comisiones de bancos,etc- haremos un planteo genérico para obtener resultados y tomar la mejor decisión dada nuestra condición actual.

En artículos pasados vimos diversos algoritmos Supervisados del Aprendizaje Automático que nos dejan clasificar datos y/o obtener predicciones o asistencia a la toma de decisiones (árbol de decisión, regresión logística y lineal, red neuronal). Por lo general esos algoritmos intentan minimizar algún tipo de coste iterando las entradas y las salidas y ajustando internamente las “pendientes” ó “pesos” para hallar una salida. Esta vez, el algoritmo que usaremos se basa completamente en teoría de probabilidades  y obteniendo resultados estadísticos. ¿Será suficiente el Teorema de Bayes para obtener buenas decisiones? Veamos!

Read More

Programa un coche Arduino con Inteligencia Artificial

El Machine Learning nos permitirá utilizar Redes Neuronales para que un coche Arduino conduzca sólo evitando obstáculos.

En el artículo anterior, creamos una red neuronal desde cero en Python. En este artículo mejoraremos esa red y copiaremos sus pesos a una red con propagación hacia adelante en Arduino que permitirá que el coche robot conduzca sólo sin chocar.

La Nueva Red Neuronal

Read More

Crear una Red Neuronal en Python desde cero

Programaremos una red neuronal artificial en Python, sin utilizar librerías de terceros. Entrenaremos el modelo y en pocas lineas el algoritmo podrá conducir por sí mismo un coche robot!.

Para ello, explicaremos brevemente la arquitectura de la red neuronal, explicaremos el concepto Forward Propagation y a continuación el de Backpropagation donde ocurre “la magia” y aprenden las neuronas.

Read More